
 2514P–AVR–07/06

Features
• High Performance , Low Power AVR® 8-Bit Micr ocontr oller
• Advanced RISC Architecture

– 130 Powerful Ins tructions – Mos t Single Cloc k Cyc le Execution
– 32 x 8 Gener al Purpose W ork ing Register s
– Ful ly Static Operatio n
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multip lier

• Non-volati le Program and Data Memories
– 16K bytes of In-Syste m Self-Pr ogrammab le Flash

Endura nce: 10,000 Write/Era se Cyc les
– Opti onal Bo ot Co de Sectio n wit h Independent Lock Bits

In-System Pr ogrammi ng by On-chi p Bo ot Pr ogram
True Read-Whil e-Write Operation

– 512 bytes EEPROM
Endura nce: 100,000 Write /Erase Cycles

– 1K byte Interna l SRAM
– Program ming Loc k for Softwa re Security

• JTAG (IEEE std. 1149 .1 compliant) Inte rface
– Boundar y-sc an Capabilitie s According to th e JTAG Standard
– Extensive On-chip Debug Support
– Program ming of Flash, EEPR OM, Fuses, and Loc k Bits thr ough the JT AG Interface

• Peripheral Features
– 4 x 25 Segment LCD Driver
– Two 8-bit Timer/Counter s with Separate Presc aler and Compa re Mode
– One 16-bi t Timer/Counter with Separ ate Presc aler, Compare Mode, and Capture

Mode
– Real Time Cou nter with Separate Oscill ator
– Four PWM Channels
– 8-channel, 10-bi t ADC
– Program mable Serial USART
– Master/Sla ve SPI Serial Interface
– Univer sal Seria l Inter face wi th Star t Condition Detec tor
– Programmable Watchd og Timer with Separate On-chi p Osci llator
– On-chip Analog Comp arator
– Interrupt and W ake-up on Pin Chang e

• Special Micr ocontrol ler Featur es
– Power-on Reset and Pr ogra mmab le Brown-out Detection
– Internal Cal ibrated Osci llator
– External an d Intern al Interru pt Sou rces
– Five Sleep Modes : Idle , ADC Nois e Reduction , Power-save , Power-down, and

Standb y
• I/O and Packages

– 53 Progra mmab le I/O Lines
– 64-lead TQFP and 64-pad QFN/MLF

• Speed Grade:
– ATmega169V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 8 MHz @ 2.7 - 5.5V
– ATmega169: 0 - 8 MHz @ 2.7 - 5.5V, 0 - 16 MHz @ 4.5 - 5.5V

• Temperatur e rang e:
– -40°C to 85°C Industrial

• Ultra -Low Power Consumption
– Active Mode:

1 MHz, 1.8V: 350µA
32 kHz, 1.8V: 20µA (inc luding Oscilla tor)
32 kHz, 1.8V: 40µA (inc luding Osci llator an d LCD)

– Power-down Mode:
0.1µA at 1.8V

8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATmega169V
ATmega169

Notice:

Not recommended in new
designs.

2 ATmega169/V
2514P–AVR–07/06

Pin Confi gurati ons Figur e 1. Pinout ATmega169

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally
connected to GND. It should be soldered or glued to the board to ensure good mechani-
cal stability. If the center pad is left unconnected, the package might loosen from the
board.

Disc laimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

PC0 (SEG12)

V
C

C

G
N

D

P
F

0
 (

A
D

C
0

)

P
F

7
 (

A
D

C
7

/T
D

I)

P
F

1
 (

A
D

C
1

)

P
F

2
 (

A
D

C
2

)

P
F

3
 (

A
D

C
3

)

P
F

4
 (

A
D

C
4

/T
C

K
)

P
F

5
 (

A
D

C
5

/T
M

S
)

P
F

6
 (

A
D

C
6

/T
D

O
)

A
R

E
F

G
N

D

A
V

C
C

1
7

6
1

6
0

1
8

5
9

2
0

5
8

1
9

2
1

5
7

2
2

5
6

2
3

5
5

2
4

5
4

2
5

5
3

2
6

5
2

2
7

5
1

2
9

2
8

5
0

4
9

3
2

3
1

3
0

(RXD/PCINT0) PE0

(TXD/PCINT1) PE1

LCDCAP

(XCK/AIN0/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4

 (DI/SDA/PCINT5) PE5

(DO/PCINT6) PE6

(CLKO/PCINT7) PE7

(SS/PCINT8) PB0

(SCK/PCINT9) PB1

 (MOSI/PCINT10) PB2

(MISO/PCINT11) PB3

(OC0A/PCINT12) PB4

 (
O

C
2

A
/P

C
IN

T
1

5
)

P
B

7

(T
1

/S
E

G
2

4
)

P
G

3

(OC1B/PCINT14) PB6

(T
0

/S
E

G
2

3
)

P
G

4

(OC1A/PCINT13) PB5

PC1 (SEG11)

PG0 (SEG14)

 (
S

E
G

1
5

)
P

D
7

PC2 (SEG10)

PC3 (SEG9)

PC4 (SEG8)

PC5 (SEG7)

PC6 (SEG6)

PC7 (SEG5)

PA7 (SEG3)

PG2 (SEG4)

PA6 (SEG2)

PA5 (SEG1)

PA4 (SEG0)

PA3 (COM3)

P
A

0
 (

C
O

M
0

)

P
A

1
 (

C
O

M
1

)

P
A

2
 (

C
O

M
2

)

PG1 (SEG13)

 (
S

E
G

1
6

)
P

D
6

(S
E

G
1

7
)

P
D

5

 (
S

E
G

1
8

)
P

D
4

 (
S

E
G

1
9

)
P

D
3

 (
S

E
G

2
0

)
P

D
2

 (
IN

T
0

/S
E

G
2

1
)

P
D

1

 (
IC

P
1

/S
E

G
2

2
)

P
D

0

(T
O

S
C

1
)

X
T

A
L

1

(T
O

S
C

2
)

X
T

A
L

2

R
E

S
E

T

G
N

D

V
C

C

ATmega169

INDEX CORNER
2

3

1

4

5

6

7

8

9

10

11

12

13

14

16

15

6
4

6
3

6
2

47

46

48

45

44

43

42

41

40

39

38

37

36

35

33

34

3

ATmega169/V

2514P–AVR–07/06

Overview
The ATmega169 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega169 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing speed.

Bloc k Diagram

Figur e 2. Block Diagram

PROGRAM
COUNTER

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

STACK
POINTER

PROGRAM
FLASH

MCU CONTROL
REGISTER

SRAM

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTERS

INSTRUCTION
DECODER

DATA DIR.
REG. PORTB

DATA DIR.
REG. PORTE

DATA DIR.
REG. PORTA

DATA DIR.
REG. PORTD

DATA REGISTER
PORTB

DATA REGISTER
PORTE

DATA REGISTER
PORTA

DATA REGISTER
PORTD

TIMING AND
CONTROL

OSCILLATOR

INTERRUPT
UNIT

EEPROM

SPIUSART

STATUS
REGISTER

Z

Y

X

ALU

PORTB DRIVERSPORTE DRIVERS

PORTA DRIVERSPORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB0 - PB7PE0 - PE7

PA0 - PA7PF0 - PF7

VCC

GND

AREF

X
T
A

L
1

X
T
A

L
2

CONTROL
LINES

+ -

A
N

A
L

O
G

C
O

M
P

A
R

A
T

O
R

PC0 - PC7

8-BIT DATA BUS

R
E

S
E

T

AVCC
CALIB. OSC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING
LOGIC

BOUNDARY-
SCAN

DATA DIR.
REG. PORTF

DATA REGISTER
PORTF

ADC

PD0 - PD7

DATA DIR.
REG. PORTG

DATA REG.
PORTG

PORTG DRIVERS

PG0 - PG4

UNIVERSAL
SERIAL INTERFACE

AVR CPU

LCD
CONTROLLER/

DRIVER

4 ATmega169/V
2514P–AVR–07/06

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega169 provides the following features: 16K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM,
54 general purpose I/O lines, 32 general purpose working registers, a JTAG interface
for Boundary-scan, On-chip Debugging support and programming, a complete On-chip
LCD controller with internal step-up voltage, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, Universal Serial
Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable
Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-
down mode saves the register contents but freezes the Oscillator, disabling all other
chip functions until the next interrupt or hardware reset. In Power-save mode, the asyn-
chronous timer and the LCD controller continues to run, allowing the user to maintain a
timer base and operate the LCD display while the rest of the device is sleeping. The
ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous
timer, LCD controller and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the crystal/resonator Oscillator is running while the rest of the device is
sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional non-volatile memory programmer, or
by an On-chip Boot program running on the AVR core. The Boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega169 is
a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega169 AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Cir-
cuit Emulators, and Evaluation kits.

5

ATmega169/V

2514P–AVR–07/06

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega169 as listed
on page 62.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega169 as listed
on page 63.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega169 as listed on page
66.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega169 as listed
on page 68.

Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega169 as listed
on page 70.

Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output

6 ATmega169/V
2514P–AVR–07/06

buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.

Port F also serves the functions of the JTAG interface.

Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega169 as listed
on page 70.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
16 on page 38. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter.

AREF This is the analog reference pin for the A/D Converter.

LCDCAP An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as
shown in Figure 98. This capacitor acts as a reservoir for LCD power (VLCD). A large
capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target
value.

About Code
Exampl es

This documentation contains simple code examples that briefly show how to use various
parts of the device. Be aware that not all C compiler vendors include bit definitions in the
header files and interrupt handling in C is compiler dependent. Please confirm with the
C compiler documentation for more details.

These code examples assume that the part specific header file is included before com-
pilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC",
"CBI", and "SBI" instructions must be replaced with instructions that allow access to
extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and
"CBR".

7

ATmega169/V

2514P–AVR–07/06

AVR CPU Core

Intr oduction This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Architectural Over view Figur e 3. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
– with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

8 ATmega169/V
2514P–AVR–07/06

the operation is executed, and the result is stored back in the Register File – in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition,
the ATmega169 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

ALU – Arithmetic Logic
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

9

ATmega169/V

2514P–AVR–07/06

Status Register The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrup t Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

• Bit 5 – H: Half Carry Fl ag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign B it, S = N!" V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Comp lement Over flow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

• Bit 2 – N: Negat ive Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10 ATmega169/V
2514P–AVR–07/06

• Bit 0 – C: Carry Fl ag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

General Purpose
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figur e 4. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

11

ATmega169/V

2514P–AVR–07/06

The X-regist er, Y-regist er, and
Z-regist er

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figur e 5. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0xFF. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

– – – – – SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

12 ATmega169/V
2514P–AVR–07/06

Instruction Ex ecution
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figur e 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figur e 7. Single Cycle ALU Operation

Reset and Interrupt
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 266 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 46.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INT0
– the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 46 for more information. The Reset Vector can also be

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU

13

ATmega169/V

2514P–AVR–07/06

moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see
“Boot Loader Support – Read-While-Write Self-Programming” on page 252.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding Interrupt Flag(s) will be set and remembered until the Global Interrupt
Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

14 ATmega169/V
2514P–AVR–07/06

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Interru pt Resp onse Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

15

ATmega169/V

2514P–AVR–07/06

AVR ATmega169

Memories
This section describes the different memories in the ATmega169. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega169 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

In-Syste m
Reprogrammab le Flash
Program Memor y

The ATmega169 contains 16K bytes On-chip In-System Reprogrammable Flash mem-
ory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 8K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega169 Program Counter (PC) is 13 bits wide, thus addressing the 8K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support – Read-
While-Write Self-Programming” on page 252. “Memory Programming” on page 266 con-
tains a detailed description on Flash data serial downloading using the SPI pins or the
JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM – Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 12.

Figur e 8. Program Memory Map

0x0000

0x1FFF

Program Memory

Application Flash Section

Boot Flash Section

16 ATmega169/V
2514P–AVR–07/06

SRAM Data Memor y Figure 9 shows how the ATmega169 SRAM Memory is organized.

The ATmega169 is a complex microcontroller with more peripheral units than can be
supported within the 64 locations reserved in the Opcode for the IN and OUT instruc-
tions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

The lower 1,280 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard I/O memory, then 160 locations of
Extended I/O memory, and the next 1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Regis-
ters, and the 1,024 bytes of internal data SRAM in the ATmega169 are all accessible
through all these addressing modes. The Register File is described in “General Purpose
Register File” on page 10.

Figur e 9. Data Memory Map

32 Registers
64 I/O Registers

Internal SRAM
(1024 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x04FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.

0x0100

17

ATmega169/V

2514P–AVR–07/06

Data Memor y Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkCPU cycles as described in Figure
10.

Figur e 10. On-chip Data SRAM Access Cycles

EEPROM Data Memor y The ATmega169 contains 512 bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM,
see page 281, page 285, and page 269 respectively.

EEPROM Read/Write Access The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction

18 ATmega169/V
2514P–AVR–07/06

The EEPROM Address
Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bit s

These bits are reserved bits in the ATmega169 and will always read as zero.

• Bits 8..0 – EEA R8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address
in the 512 bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 511. The initial value of EEAR is undefined. A proper value must be writ-
ten before the EEPROM may be accessed.

The EEPROM Data Regist er –
EEDR

• Bits 7..0 – EED R7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

The EEPROM Contr ol Register
– EECR

• Bits 7..4 – Res: Reserve d Bi ts

These bits are reserved bits in the ATmega169 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interr upt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enab le

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address. If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

19

ATmega169/V

2514P–AVR–07/06

• Bit 1 – EEWE: EEPROM Write Enab le

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support – Read-While-Write Self-Programming” on
page 252 for details about Boot programming.

Caut ion: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 – EERE: EEPROM Read Enab le

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Symb ol Number of Cal ibrated RC Osci llator Cycles Typ Programm ing Time

EEPROM write
(from CPU)

67 584 8.5 ms

20 ATmega169/V
2514P–AVR–07/06

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

21

ATmega169/V

2514P–AVR–07/06

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

EEPROM Write Dur ing Power-
down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time
has passed. However, when the write operation is completed, the clock continues run-
ning, and as a consequence, the device does not enter Power-down entirely. It is
therefore recommended to verify that the EEPROM write operation is completed before
entering Power-down.

Preventing EEPR OM
Corru ption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corrupt ion can easi ly be avoided by fo l lowing th is design
recommendation:

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from Data Register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

22 ATmega169/V
2514P–AVR–07/06

Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD). If the detection
level of the internal BOD does not match the needed detection level, an external low
VCC reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is
sufficient.

I/O Memory The I/O space definition of the ATmega169 is shown in “Register Summary” on page
339.

All ATmega169 I/Os and peripherals are placed in the I/O space. All I/O locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the I/O space. I/O Registers
within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI
instructions. In these registers, the value of single bits can be checked by using the
SBIS and SBIC instructions. Refer to the instruction set section for more details. When
using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be
used. When addressing I/O Registers as data space using LD and ST instructions, 0x20
must be added to these addresses. The ATmega169 is a complex microcontroller with
more peripheral units than can be supported within the 64 location reserved in Opcode
for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike
most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and
can therefore be used on registers containing such Status Flags. The CBI and SBI
instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

General Purpo se I/O Regist ers The ATmega169 contains three General Purpose I/O Registers. These registers can be
used for storing any information, and they are particularly useful for storing global vari-
ables and Status Flags. General Purpose I/O Registers within the address range 0x00 -
0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

General Purpos e I/O Regist er
2 – GPIOR2

General Purpos e I/O Regist er
1 – GPIOR1

General Purpos e I/O Regist er
0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

23

ATmega169/V

2514P–AVR–07/06

System Cl ock and
Cloc k Options

Cloc k Systems and their
Distrib ution

Figure 11 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 32. The clock systems
are detailed below.

Figur e 11. Clock Distribution

CPU Cloc k – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that start condition detection in the USI
module is carried out asynchronously when clkI/O is halted, enabling USI start condition
detection in all sleep modes.

Flash Cloc k – clkFLASH The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

Asy nchronous Timer Cloc k –
clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter and the LCD
controller to be clocked directly from an external clock or an external 32 kHz clock crys-
tal. The dedicated clock domain allows using this Timer/Counter as a real-time counter
even when the device is in sleep mode. It also allows the LCD controller output to con-
tinue while the rest of the device is in sleep mode.

General I/O
Modules

Asynchronous
Timer/Counter

CPU Core RAM

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

Source clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External Clock

LCD Controller

System Clock

Prescaler

24 ATmega169/V
2514P–AVR–07/06

ADC Cloc k – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

Cloc k Sour ces The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is an additional delay allowing the power to reach
a stable level before commencing normal operation. The Watchdog Oscillator is used
for timing this real-time part of the start-up time. The number of WDT Oscillator cycles
used for each time-out is shown in Table 3. The frequency of the Watchdog Oscillator is
voltage dependent as shown in “ATmega169 Typical Characteristics” on page 305.

Default Cloc k Sour ce The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed.
The default clock source setting is the Internal RC Oscillator with longest start-up time
and an initial system clock prescaling of 8. This default setting ensures that all users can
make their desired clock source setting using an In-System or Parallel programmer.

Table 2. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1000

External Low-frequency Crystal 0111 - 0110

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0011, 0001, 0101, 0100

Table 3. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (V CC = 3.0V) Numbe r of C ycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)

25

ATmega169/V

2514P–AVR–07/06

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 12. Either a quartz
crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value
of the capacitors depends on the crystal or resonator in use, the amount of stray capac-
itance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 4. For ceramic resonators,
the capacitor values given by the manufacturer should be used.

Figur e 12. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 4.

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 5.

Table 4. Crystal Oscillator Operating Modes

CKSEL3..1 Freque ncy Rang e (MHz)
Recommended Rang e for Capacitor s C1

and C2 f or Use with Cr ys tals (pF)

100(1) 0.4 - 0.9 –

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 12 - 22

XTAL2

XTAL1

GND

C2

C1

26 ATmega169/V
2514P–AVR–07/06

Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

Low-frequenc y Crystal
Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency
crystal Oscillator must be selected by setting the CKSEL Fuses to “0110” or “0111”. The
crystal should be connected as shown in Figure 12. When this Oscillator is selected,
start-up times are determined by the SUT Fuses as shown in Table 6 and CKSEL1..0 as
shown in Table 7.

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1..0

Star t-up Time fr om
Power-down and

Power-save

Addi tional Delay
from Res et
(VCC = 5.0V) Recommended Usa ge

0 00 258 CK(1) 14CK + 4.1 ms Ceramic resonator, fast
rising power

0 01 258 CK(1) 14CK + 65 ms Ceramic resonator,
slowly rising power

0 10 1K CK(2) 14CK Ceramic resonator,
BOD enabled

0 11 1K CK(2) 14CK + 4.1 ms Ceramic resonator, fast
rising power

1 00 1K CK(2) 14CK + 65 ms Ceramic resonator,
slowly rising power

1
01 16K CK 14CK Crystal Oscillator, BOD

enabled

1
10 16K CK 14CK + 4.1 ms Crystal Oscillator, fast

rising power

1
11 16K CK 14CK + 65 ms Crystal Oscillator,

slowly rising power

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Dela y fr om Reset (VCC = 5.0V) Recomme nded Usage

00 14CK Fast rising power or BOD enabled

01 14CK + 4.1 ms Slowly rising power

10 14CK + 65 ms Stable frequency at start-up

11 Reserved

27

ATmega169/V

2514P–AVR–07/06

Note: 1. This option should only be used if frequency stability at start-up is not important for
the application

Calibrated Internal RC
Oscillator

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is
nominal value at 3V and 25#C. If 8 MHz frequency exceeds the specification of the
device (depends on VCC), the CKDIV8 Fuse must be programmed in order to divide the
internal frequency by 8 during start-up. The device is shipped with the CKDIV8 Fuse
programmed. See “System Clock Prescaler” on page 29. for more details. This clock
may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 8. If selected, it will operate with no external components. During reset, hardware
loads the calibration byte into the OSCCAL Register and thereby automatically cali-
brates the RC Oscillator. At 3V and 25#C, this calibration gives a frequency within ± 10%
of the nominal frequency. Using calibration methods as described in application notes
available at www.atmel.com/avr it is possible to achieve ± 2% accuracy at any given VCC
and Temperature. When this Oscillator is used as the chip clock, the Watchdog Oscilla-
tor will still be used for the Watchdog Timer and for the Reset Time-out. For more
information on the pre-programmed calibration value, see the section “Calibration Byte”
on page 269.

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 9. Selecting internal RC Oscillator allows the XTAL1/TOSC1 and
XTAL2/TOSC2 pins to be used as timer oscillator pins.

Note: 1. The device is shipped with this option selected.

Table 7. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0
Star t-up Time fr om

Power-down and P ower-save Recommen ded Usa ge

0110(1) 1K CK

0111 32K CK Stable frequency at start-up

Table 8. Internal Calibrated RC Oscillator Operating Modes(1)

 CKSEL3..0 Nomina l Frequency

0010 8.0 MHz

Table 9. Start-up times for the internal calibrated RC Oscillator clock selection

SUT1..0
Start-up Time from Power-

down and Power-save
Additional D elay from

Reset (VCC = 5.0V) Recommended Usa ge

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10(1) 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

28 ATmega169/V
2514P–AVR–07/06

Oscill ator Ca libra tion Regist er
– OSCCAL

• Bits 6..0 – CAL6..0: Osc ill ator Ca libra tion V alue

Writing the calibration byte to this address will trim the internal Oscillator to remove pro-
cess variations from the Oscillator frequency. This is done automatically during Chip
Reset. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the internal Oscillator. Writing
0x7F to the register gives the highest available frequency. The calibrated Oscillator is
used to time EEPROM and Flash access. If EEPROM or Flash is written, do not cali-
brate to more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash
write may fail. Note that the Oscillator is intended for calibration to 8.0 MHz. Tuning to
other values is not guaranteed, as indicated in Table 10.

External Cloc k To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 13. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000”.

Figur e 13. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 12.

Bit 7 6 5 4 3 2 1 0

– CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 10. Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequenc y in Percenta ge of

Nominal Frequ ency
Max Frequency in Percentage of

Nomina l Frequency

0x00 50% 100%

0x3F 75% 150%

0x7F 100% 200%

Table 11. Crystal Oscillator Clock Frequency

CKSEL3..0 Frequency Range

0000 0 - 16 MHz

NC

EXTERNAL

CLOCK

SIGNAL

XTAL2

XTAL1

GND

29

ATmega169/V

2514P–AVR–07/06

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of
the internal clock frequency while still ensuring stable operation. Refer to “System Clock
Prescaler” on page 29 for details.

Cloc k Output Buff er When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This
mode is suitable when chip clock is used to drive other circuits on the system. The clock
will be output also during reset and the normal operation of I/O pin will be overridden
when the fuse is programmed. Any clock source, including internal RC Oscillator, can be
selected when CLKO serves as clock output. If the System Clock Prescaler is used, it is
the divided system clock that is output when the CKOUT Fuse is programmed.

Timer/Counter Oscillator ATmega169 share the Timer/Counter Oscillator Pins (TOSC1 and TOSC2) with XTAL1
and XTAL2. This means that the Timer/Counter Oscillator can only be used when the
calibrated internal RC Oscillator is selected as system clock source. The Oscillator is
optimized for use with a 32.768 kHz watch crystal. See Figure 12 on page 25 for crystal
connection.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Reg-
ister is written to logic one. See “Asynchronous operation of the Timer/Counter” on page
138 for further description on selecting external clock as input instead of a 32 kHz
crystal.

System Cloc k Prescaler The ATmega169 system clock can be divided by setting the “Clock Prescale Register –
CLKPR” on page 30. This feature can be used to decrease the system clock frequency
and power consumption when the requirement for processing power is low. This can be
used with all clock source options, and it will affect the clock frequency of the CPU and
all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are divided by a factor as
shown in Table 13.

When switching between prescaler settings, the System Clock Prescaler ensures that
no glitches occur in the clock system and that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock fre-
quency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided
clock, which may be faster than the CPU’s clock frequency. Hence, it is not possible to
determine the state of the prescaler – even if it were readable, and the exact time it
takes to switch from one clock division to another cannot be exactly predicted. From the

Table 12. Start-up Times for the External Clock Selection

SUT1..0
Star t-up Time fr om Power-

down and Power-save
Addi tional Delay from

Reset (VCC = 5.0V) Recommende d Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

30 ATmega169/V
2514P–AVR–07/06

time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here,
T1 is the previous clock period, and T2 is the period corresponding to the new prescaler
setting.

To avoid unintentional changes of clock frequency, a special write procedure must be
followed to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other
bitsin CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to
CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write pro-
cedure is not interrupted.

Clock Prescale Register –
CLKPR

• Bit 7 – CLKPCE: Cl ock Prescaler Chan ge Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The
CLKPCE bit is only updated when the other bits in CLKPR are simultaneously written to
zero. CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits
are written. Rewriting the CLKPCE bit within this time-out period does neither extend the
time-out period, nor clear the CLKPCE bit.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bi ts 3 - 0

These bits define the division factor between the selected clock source and the internal
system clock. These bits can be written run-time to vary the clock frequency to suit the
application requirements. As the divider divides the master clock input to the MCU, the
speed of all synchronous peripherals is reduced when a division factor is used. The divi-
sion factors are given in Table 13.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unpro-
grammed, the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits
are reset to “0011”, giving a division factor of 8 at start up. This feature should be used if
the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. Note that any value can be written to the
CLKPS bits regardless of the CKDIV8 Fuse setting. The Application software must
ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating condi-
tions. The device is shipped with the CKDIV8 Fuse programmed.

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

31

ATmega169/V

2514P–AVR–07/06

Table 13. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Cloc k Divis ion Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

32 ATmega169/V
2514P–AVR–07/06

Power Management
and Sle ep Mode s

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR
Register select which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-
save, or Standby) will be activated by the SLEEP instruction. See Table 14 for a sum-
mary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes
up. The MCU is then halted for four cycles in addition to the start-up time, executes the
interrupt routine, and resumes execution from the instruction following SLEEP. The con-
tents of the Register File and SRAM are unaltered when the device wakes up from
sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the
Reset Vector.

Figure 11 on page 23 presents the different clock systems in the ATmega169, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

Sleep Mode Control Regist er –
SMCR

The Sleep Mode Control Register contains control bits for power management.

• Bits 3, 2, 1 – SM2..0: Sleep Mode Sel ect Bi ts 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 14.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enab le

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved

33

ATmega169/V

2514P–AVR–07/06

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing LCD controller, the SPI, USART, Analog
Comparator, ADC, USI, Timer/Counters, Watchdog, and the interrupt system to con-
tinue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the
other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register – ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

ADC Noise Reduction
Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external inter-
rupts, the USI start condition detection, Timer/Counter2, LCD Controller, and the
Watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O,
clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart form the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, an LCD controller interrupt, USI start condition
interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external
level interrupt on INT0 or a pin change interrupt can wake up the MCU from ADC Noise
Reduction mode.

Power-down Mo de When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the external Oscillator is stopped, while the external
interrupts, the USI start condition detection, and the Watchdog continue operating (if
enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, USI start con-
dition interrupt, an external level interrupt on INT0, or a pin change interrupt can wake
up the MCU. This sleep mode basically halts all generated clocks, allowing operation of
asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 51 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
Fuses that define the Reset Time-out period, as described in “Clock Sources” on page
24.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 and/or the LCD controller are enabled, they will keep running during
sleep. The device can wake up from either Timer Overflow or Output Compare event
from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in
TIMSK2, and the Global Interrupt Enable bit in SREG is set. It can also wake up from an
LCD controller interrupt.

If neither Timer/Counter2 nor the LCD controller is running, Power-down mode is rec-
ommended instead of Power-save mode.

34 ATmega169/V
2514P–AVR–07/06

The LCD controller and Timer/Counter2 can be clocked both synchronously and asyn-
chronously in Power-save mode. The clock source for the two modules can be selected
independent of each other. If neither the LCD controller nor the Timer/Counter2 is using
the asynchronous clock, the Timer/Counter Oscillator is stopped during sleep. If neither
the LCD controller nor the Timer/Counter2 is using the synchronous clock, the clock
source is stopped during sleep. Note that even if the synchronous clock is running in
Power-save, this clock is only available for the LCD controller and Timer/Counter2.

Standb y Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If either LCD controller or Timer/Counter2 is running in asynchronous mode.
3. For INT0, only level interrupt.

Power Reduction
Register

The Power Reduction Register, PRR, provides a method to stop the clock to individual
peripherals to reduce power consumption. The current state of the peripheral is frozen
and the I/O registers can not be read or written. Resources used by the peripheral when
stopping the clock will remain occupied, hence the peripheral should in most cases be
disabled before stopping the clock. Waking up a module, which is done by clearing the
bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the
overall power consumption. See “Supply Current of I/O modules” on page 310 for exam-
ples. In all other sleep modes, the clock is already stopped.

Power Reduc tion Regist er -
PRR

• Bit 7..5 - Res: Reserved bits

These bits are reserved in ATmega169 and will always read as zero.

Table 15. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillator s Wake-up Sour ces

Sleep Mode clkCPU clk FLASH clkIO clk ADC clkASY

Main Cloc k
Source
Enabled

Timer
Osc

Enabled

INT0
and Pin
Chang

e
USI Start
Condition

LCD
Cont roller Timer2

SPM/
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X X

ADC Noise
Reduction X X X X(2) X(3) X X(2) X(2) X X

Power-down X(3) X

Power-save X X X(3) X X X

Standby(1) X X(3) X

Bit 7 6 5 4 3 2 1 0

– – – PRLCD PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

35

ATmega169/V

2514P–AVR–07/06

• Bit 4 - PRLCD: Power Reduct ion LCD

Writing logic one to this bit shuts down the LCD controller. The LCD controller must be
disabled and the display discharged before shut down. See "Disabling the LCD" on
page 217 for details on how to disable the LCD controller.

• Bit 3 - PRTIM1: Power Reduct ion Timer/Count er1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the
Timer/Counter1 is enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduc tion Seria l Periphe ral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the
clock to the module. When waking up the SPI again, the SPI should be re initialized to
ensure proper operation.

• Bit 1 - PRUSART0: Power Reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the mod-
ule. When waking up the USART again, the USART should be re initialized to ensure
proper operation.

• Bit 0 - PRA DC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before
shut down. The analog comparator cannot use the ADC input MUX when the ADC is
shut down.
Note: The Analog Comparator is disabled using the ACD-bit in the “Analog Comparator Control

and Status Register – ACSR” on page 190.

Minimizing P ower
Consumption

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

Analog to Digit al Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog to Digital Con-
verter” on page 193 for details on ADC operation.

Analog Comparator When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 190 for details on how to configure the Analog Comparator.

36 ATmega169/V
2514P–AVR–07/06

Brown-out Detector If the Brown-out Detector is not needed by the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in
all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 40 for details on how to configure the Brown-out Detector.

Internal Voltage Reference The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tion, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 42 for details on the
start-up time.

Watchdog Timer If the Watchdog Timer is not needed in the application, the module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 43 for details on how
to configure the Watchdog Timer.

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power.
The most important is then to ensure that no pins drive resistive loads. In sleep modes
where both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buff-
ers of the device will be disabled. This ensures that no power is consumed by the input
logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and
Sleep Modes” on page 59 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to VCC/2,
the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog
signal level close to VCC/2 on an input pin can cause significant current even in active
mode. Digital input buffers can be disabled by writing to the Digital Input Disable Regis-
ters (DIDR1 and DIDR0). Refer to “Digital Input Disable Register 1 – DIDR1” on page
192 and “Digital Input Disable Register 0 – DIDR0” on page 209 for details.

JTAG Interface and
On-chip Debug Sys tem

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power
down or Power save sleep mode, the main clock source remains enabled. In these
sleep modes, this will contribute significantly to the total current consumption. There are
three alternative ways to avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP
controller is not shifting data. If the hardware connected to the TDO pin does not pull up
the logic level, power consumption will increase. Note that the TDI pin for the next
device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the
JTAG interface.

37

ATmega169/V

2514P–AVR–07/06

System Contr ol and
Reset

Resett ing th e AVR During reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
– Absolute Jump – instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The
circuit diagram in Figure 14 shows the reset logic. Table 16 defines the electrical param-
eters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the SUT
and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 24.

Reset Sour ces The ATmega169 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the
Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 232 for details.

38 ATmega169/V
2514P–AVR–07/06

Figur e 14. Reset Logic

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT
(falling)

Table 16. Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset Threshold
Voltage (rising)

TA = -40°C
to 85°C

0.7 1.0 1.4 V

Power-on Reset Threshold
Voltage (falling)(1)

TA = -40°C
to 85°C

0.6 0.9 1.3 V

VRST RESET Pin Threshold Voltage VCC = 3V 0.2 VCC 0.9 VCC V

tRST
Minimum pulse width on
RESET Pin

VCC = 3V 2.5 µs

MCU Status

Register (MCUSR)

Brown-out

Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK

TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock

Generator

SPIKE

FILTER

Pull-up Resistor

J
T

R
F

JTAG Reset

Register

Watchdog

Oscillator

SUT[1:0]

Power-on Reset

Circuit

39

ATmega169/V

2514P–AVR–07/06

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 16. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after VCC rise. The RESET signal is activated
again, without any delay, when VCC decreases below the detection level.

Figur e 15. MCU Start-up, RESET Tied to VCC

Figur e 16. MCU Start-up, RESET Extended Externally

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

40 ATmega169/V
2514P–AVR–07/06

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 16) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay
counter starts the MCU after the Time-out period – tTOUT – has expired.

Figur e 17. External Reset During Operation

Brown-out Detection ATmega169 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to
ensure spike free Brown-out Detection. The hysteresis on the detection level should be
interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to VCC = VBOT during the
production test. This guarantees that a Brown-Out Reset will occur before VCC drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 110 for ATmega169V.

CC

Table 17. BODLEVEL Fuse Coding(1)

BODLEVEL 2..0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

011

Reserved
010

001

000

Table 18. Brown-out Characteristics

Symbol Parameter Min Typ Max Units

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

41

ATmega169/V

2514P–AVR–07/06

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT-
in Figure 18), the Brown-out Reset is immediately activated. When VCC increases above
the trigger level (VBOT+ in Figure 18), the delay counter starts the MCU after the Time-
out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 16.

Figur e 18. Brown-out Reset During Operation

Watchdog Res et When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 43 for details on operation of the Watchdog Timer.

Figur e 19. Watchdog Reset During Operation

MCU Status Register –
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

42 ATmega169/V
2514P–AVR–07/06

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Br own-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 1 – EXTRF: Ext ernal Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then Reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

Internal Voltage
Reference

ATmega169 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC.

Voltage Reference Enable
Signals and Sta rt-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 19. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Table 19. Internal Voltage Reference Characteristics

Symbol Parameter Condition Min Typ Max Units

VBG Bandgap reference voltage
VCC = 2.7V,
TA = 25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC = 2.7V,
TA = 25°C

40 70 µs

IBG
Bandgap reference current
consumption

VCC = 2.7V,
TA = 25°C

15 µA

43

ATmega169/V

2514P–AVR–07/06

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical value at VCC = 5V. See characterization data for typical values
at other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 21 on page 44. The WDR – Watchdog Reset
– instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega169 resets and executes from the Reset Vector. For tim-
ing details on the Watchdog Reset, refer to Table 21 on page 44.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out
period, two different safety levels are selected by the fuse WDTON as shown in Table
20. Refer to “Timed Sequences for Changing the Configuration of the Watchdog Timer”
on page 45 for details.

Figur e 20. Watchdog Timer

Watchdog Timer Cont rol
Register – WDTCR

• Bits 7..5 – Res: Reserve d Bi ts

These bits are reserved bits in the ATmega169 and will always read as zero.

• Bit 4 – WDCE: Watchdog Chan ge Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. This
bit must also be set when changing the prescaler bits. See “Timed Sequences for
Changing the Configuration of the Watchdog Timer” on page 45.

Table 20. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON
Safety
Level

WDT Initi al
State

How to Di sable the
WDT

How to Chang e
Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

WATCHDOG

OSCILLATOR

Bit 7 6 5 4 3 2 1 0

– – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

44 ATmega169/V
2514P–AVR–07/06

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDCE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algo-
rithm described above. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 45.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Pre scaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 21.

Note: Also see Figure 191 on page 332.

Table 21. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT
Oscillator C ycles

Typical Time-out
at VCC = 3.0V

Typical Time-out
at VCC = 5.0V

0 0 0 16K cycles 15.4 ms 14.7 ms

0 0 1 32K cycles 30.8 ms 29.3 ms

0 1 0 64K cycles 61.6 ms 58.7 ms

0 1 1 128K cycles 0.12 s 0.12 s

1 0 0 256K cycles 0.25 s 0.23 s

1 0 1 512K cycles 0.49 s 0.47 s

1 1 0 1,024K cycles 1.0 s 0.9 s

1 1 1 2,048K cycles 2.0 s 1.9 s

45

ATmega169/V

2514P–AVR–07/06

The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during execution of these functions.

Note: 1. See “About Code Examples” on page 6.

Timed Sequences f or Changing the Configuration of the Watchdog Timer

The sequence for changing configuration differs slightly between the two safety levels.
Separate procedures are described for each level.

Safety Level 1 In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the
WDE bit to 1 without any restriction. A timed sequence is needed when changing the
Watchdog Time-out period or disabling an enabled Watchdog Timer. To disable an
enabled Watchdog Timer, and/or changing the Watchdog Time-out, the following proce-
dure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP
bits as desired, but with the WDCE bit cleared.

Safety Level 2 In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read
as one. A timed sequence is needed when changing the Watchdog Time-out period. To
change the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the
WDE always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as
desired, but with the WDCE bit cleared. The value written to the WDE bit is
irrelevant.

Assembly Code Example(1)

WDT_off:

; Reset WDT

wdr

; Write logical one to WDCE and WDE

in r16, WDTCR

ori r16, (1<<WDCE)|(1<<WDE)

out WDTCR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCR, r16

ret

C Code Example(1)

void WDT_off(void)

{

/* Reset WDT */

__watchdog_reset();

/* Write logical one to WDCE and WDE */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}

46 ATmega169/V
2514P–AVR–07/06

Interrupts This section describes the specifics of the interrupt handling as performed in
ATmega169. For a general explanation of the AVR interrupt handling, refer to “Reset
and Interrupt Handling” on page 12.

Interrupt V ector s in
ATmega169

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support – Read-While-Write Self-Programming”
on page 252.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of
the Boot Flash Section. The address of each Interrupt Vector will then be the address
in this table added to the start address of the Boot Flash Section.

Table 22. Reset and Interrupt Vectors

Vector
No.

Program
Address (2) Sour ce Interrupt Definition

1 0x0000(1) RESET External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 PCINT0 Pin Change Interrupt Request 0

4 0x0006 PCINT1 Pin Change Interrupt Request 1

5 0x0008 TIMER2 COMP Timer/Counter2 Compare Match

6 0x000A TIMER2 OVF Timer/Counter2 Overflow

7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0010 TIMER1 COMPB Timer/Counter1 Compare Match B

10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMER0 COMP Timer/Counter0 Compare Match

12 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x0018 SPI, STC SPI Serial Transfer Complete

14 0x001A USART, RX USART, Rx Complete

15 0x001C USART, UDRE USART Data Register Empty

16 0x001E USART, TX USART, Tx Complete

17 0x0020 USI START USI Start Condition

18 0x0022 USI OVERFLOW USI Overflow

19 0x0024 ANALOG COMP Analog Comparator

20 0x0026 ADC ADC Conversion Complete

21 0x0028 EE READY EEPROM Ready

22 0x002A SPM READY Store Program Memory Ready

23 0x002C LCD LCD Start of Frame

47

ATmega169/V

2514P–AVR–07/06

Table 23 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 113 on page 264. For the BOOTRST
Fuse “1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega169 is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

0x0006 jmp PCINT1 ; PCINT0 Handler

0x0008 jmp TIM2_COMP ; Timer2 Compare Handler

0x000A jmp TIM2_OVF ; Timer2 Overflow Handler

0x000C jmp TIM1_CAPT ; Timer1 Capture Handler

0x000E jmp TIM1_COMPA ; Timer1 CompareA Handler

0x0010 jmp TIM1_COMPB ; Timer1 CompareB Handler

0x0012 jmp TIM1_OVF ; Timer1 Overflow Handler

0x0014 jmp TIM0_COMP ; Timer0 Compare Handler

0x0016 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0018 jmp SPI_STC ; SPI Transfer Complete Handler

0x001A jmp USART_RXC ; USART RX Complete Handler

0x001C jmp USART_DRE ; USART,UDR Empty Handler

0x001E jmp USART_TXC ; USART TX Complete Handler

0x0020 jmp USI_STRT ; USI Start Condition Handler

0x0022 jmp USI_OVFL ; USI Overflow Handler

0x0024 jmp ANA_COMP ; Analog Comparator Handler

0x0026 jmp ADC ; ADC Conversion Complete Handler

0x0028 jmp EE_RDY ; EEPROM Ready Handler

0x002A jmp SPM_RDY ; SPM Ready Handler

0x002C jmp LCD_SOF ; LCD Start of Frame Handler

;

0x002E RESET: ldi r16, high(RAMEND); Main program start

0x002F out SPH,r16 Set Stack Pointer to top of RAM

0x0030 ldi r16, low(RAMEND)

0x0031 out SPL,r16
0x0032 sei ; Enable interrupts

0x0033 <instr> xxx

Table 23. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Ad dress Interr upt Vector s Star t Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

48 ATmega169/V
2514P–AVR–07/06

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and
the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND) ; Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x1C02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp PCINT0 ; PCINT0 Handler

... ;

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ;

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND) ; Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr> xxx

49

ATmega169/V

2514P–AVR–07/06

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typ-
ical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

;

.org 0x1C00
0x1C00 jmp RESET ; Reset handler
0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp PCINT0 ; PCINT0 Handler

... ;

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x1C2E RESET: ldi r16,high(RAMEND) ; Main program start

0x1C2F out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C30 ldi r16,low(RAMEND)

0x1C31 out SPL,r16
0x1C32 sei ; Enable interrupts

0x1C33 <instr> xxx

Moving Int erru pts Between
Applicat ion and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector
table.

MCU Contr ol Regist er –
MCUCR

• Bit 1 – IVSEL: Inter rupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash Section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support – Read-While-Write Self-Programming” on page 252 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to
IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.
Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-

grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support – Read-While-Write Self-Programming” on page 252
for details on Boot Lock bits.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

50 ATmega169/V
2514P–AVR–07/06

• Bit 0 – IVCE: Interru pt Vector Ch ange Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ldi r16, (1<<IVSEL)

out MCUCR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL);

}

51

ATmega169/V

2514P–AVR–07/06

External Interrupts The External Interrupts are triggered by the INT0 pin or any of the PCINT15..0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT0 or PCINT15..0 pins
are configured as outputs. This feature provides a way of generating a software inter-
rupt. The pin change interrupt PCI1 will trigger if any enabled PCINT15..8 pin toggles.
Pin change interrupts PCI0 will trigger if any enabled PCINT7..0 pin toggles. The
PCMSK1 and PCMSK0 Registers control which pins contribute to the pin change inter-
rupts. Pin change interrupts on PCINT15..0 are detected asynchronously. This implies
that these interrupts can be used for waking the part also from sleep modes other than
Idle mode.

The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set
up as indicated in the specification for the External Interrupt Control Register A –
EICRA. When the INT0 interrupt is enabled and is configured as level triggered, the
interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INT0 requires the presence of an I/O clock, described in “Clock Sys-
tems and their Distribution” on page 23. Low level interrupt on INT0 is detected
asynchronously. This implies that this interrupt can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes
except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the
required level must be held long enough for the MCU to complete the wake-up to trigger
the level interrupt. If the level disappears before the end of the Start-up Time, the MCU
will still wake up, but no interrupt will be generated. The start-up time is defined by the
SUT and CKSEL Fuses as described in “System Clock and Clock Options” on page 23.

Pin Chang e Interrupt
Timing

An example of timing of a pin change interrupt is shown in Figure 21.

Figur e 21. Pin Change Interrupt

clk

PCINT(n)

pin_lat

pin_sync

pcint_in_(n)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x

52 ATmega169/V
2514P–AVR–07/06

External Int errupt Cont rol
Register A – EICRA

The External Interrupt Control Register A contains control bits for interrupt sense
control.

• Bit 1, 0 – ISC01, ISC00: Interru pt Sen se Cont rol 0 Bit 1 and Bi t 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that
activate the interrupt are defined in Table 24. The value on the INT0 pin is sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer
than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

– – – – – – ISC01 ISC00 EICRA

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 24. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

53

ATmega169/V

2514P–AVR–07/06

Externa l Interru pt Mask
Register – EIMSK

• Bit 7 – PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will
cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is exe-
cuted from the PCI1 Interrupt Vector. PCINT15..8 pins are enabled individually by the
PCMSK1 Register.

• Bit 6 – PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause
an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed
from the PCI0 Interrupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0
Register.

• Bit 0 – INT0: Ext ernal Interrupt Request 0 Enab le

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the External Interrupt Control Register A (EICRA) define whether the external
interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Inter-
rupt Vector.

Externa l Interru pt Flag
Register – EIFR

• Bit 7 – PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1
becomes set (one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

• Bit 6 – PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0
becomes set (one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

Bit 7 6 5 4 3 2 1 0

PCIE1 PCIE0 – – – – – INT0 EIMSK

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCIF1 PCIF0 – – – – – INTF0 EIFR

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

54 ATmega169/V
2514P–AVR–07/06

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0
becomes set (one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it. This flag is always cleared when INT0 is configured as a level interrupt.

Pin Change Mask Regist er 1 –
PCMSK1

• Bit 7..0 – PCINT15..8: Pin Chan ge Enable Mask 15..8

Each PCINT15..8-bit selects whether pin change interrupt is enabled on the correspond-
ing I/O pin. If PCINT15..8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt
is enabled on the corresponding I/O pin. If PCINT15..8 is cleared, pin change interrupt
on the corresponding I/O pin is disabled.

Pin Change Mask Regist er 0 –
PCMSK0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the correspond-
ing I/O pin. If PCINT7..0 is set and the PCIE0 bit in EIMSK is set, pin change interrupt is
enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change interrupt on
the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

55

ATmega169/V

2514P–AVR–07/06

I/O-Por ts

Intr oduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
VCC and Ground as indicated in Figure 22. Refer to “Electrical Characteristics” on page
298 for a complete list of parameters.

Figur e 22. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case
“x” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Register Descrip-
tion for I/O-Ports” on page 76.

Three I/O memory address locations are allocated for each port, one each for the Data
Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. However, writing a logic one to a bit in the PINx Register, will
result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up
Disable – PUD bit in MCUCR disables the pull-up function for all pins in all ports when
set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on
page 56. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
in “Alternate Port Functions” on page 60. Refer to the individual module sections for a
full description of the alternate functions.

C
pin

Logic

R
pu

See Figure

"General Digital I/O" for

Details

Pxn

56 ATmega169/V
2514P–AVR–07/06

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

Ports as General Digital
I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a
functional description of one I/O-port pin, here generically called Pxn.

Figur e 23. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, SLEEP, and PUD are common to all ports.

Conf iguring th e Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Register Description for I/O-Ports” on page 76, the DDxn bits are accessed at the
DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at
the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

57

ATmega169/V

2514P–AVR–07/06

Togg ling the Pin Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of
DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port.

Switc hing B etween Input and
Outpu t

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up
enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bit in
the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 25 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 23, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
24 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min
respectively.

Figur e 24. Synchronization when Reading an Externally Applied Pin value

Table 25. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

58 ATmega169/V
2514P–AVR–07/06

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the suc-
ceeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a
single signal transition on the pin will be delayed between ½ and 1½ system clock
period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 25. The out instruction sets the “SYNC LATCH” signal at the positive
edge of the clock. In this case, the delay tpd through the synchronizer is 1 system clock
period.

Figur e 25. Synchronization when Reading a Software Assigned Pin Value

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd

59

ATmega169/V

2514P–AVR–07/06

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

Digit al Inpu t Enable and Sleep
Modes

As shown in Figure 23, the digital input signal can be clamped to ground at the input of
the Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high
power consumption if some input signals are left floating, or have an analog signal level
close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external inter-
rupt request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 60.

If a logic high level (“one”) is present on an asynchronous external interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
external interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned Sleep mode, as the clamping in these sleep
mode produces the requested logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

60 ATmega169/V
2514P–AVR–07/06

Unco nnec ted Pins If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to VCC or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.

Alternate P ort Functions Most port pins have alternate functions in addition to being general digital I/Os. Figure
26 shows how the port pin control signals from the simplified Figure 23 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figur e 26. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, SLEEP, and PUD are common to all ports. All other signals are unique for each
pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE

DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
A
T
A

 B
U

S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

61

ATmega169/V

2514P–AVR–07/06

Table 26 summarizes the function of the overriding signals. The pin and port indexes
from Figure 26 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.

Table 26. Generic Description of Overriding Signals for Alternate Functions

Signal Na me Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the
PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled
by the DDOV signal. If this signal is cleared, the Output
driver is enabled by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the
port value is controlled by the PVOV signal. If PVOE is
cleared, and the Output Driver is enabled, the port Value
is controlled by the PORTxn Register bit.

PVOV Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless
of the setting of the PORTxn Register bit.

PTOE Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital Input
Enable is determined by MCU state (Normal mode, sleep
mode).

DIEOV Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state
(Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the schmitt
trigger but before the synchronizer. Unless the Digital
Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog
Input/Output

This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad, and
can be used bi-directionally.

62 ATmega169/V
2514P–AVR–07/06

MCU Contr ol Regist er –
MCUCR

• Bit 4 – PUD: Pul l-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn
and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).
See “Configuring the Pin” on page 56 for more details about this feature.

Alter nate Func tion s of Port A The Port A has an alternate function as COM0:3 and SEG0:3 for the LCD Controller.

Table 28 and Table 29 relates the alternate functions of Port A to the overriding signals
shown in Figure 26 on page 60.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27. Port A Pins Alternate Functions

Port Pin Altern ate Functio n

PA7 SEG3 (LCD Front Plane 3)

PA6 SEG2 (LCD Front Plane 2)

PA5 SEG1 (LCD Front Plane 1)

PA4 SEG0 (LCD Front Plane 0)

PA3 COM3 (LCD Back Plane 3)

PA2 COM2 (LCD Back Plane 2)

PA1 COM1 (LCD Back Plane 1)

PA0 COM0 (LCD Back Plane 0)

Table 28. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/SEG3 PA6/SEG2 PA5/SEG1 PA4/SEG0

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG3 SEG2 SEG1 SEG0

63

ATmega169/V

2514P–AVR–07/06

Alter nate Func tion s of Port B The Port B pins with alternate functions are shown in Table 30.

The alternate pin configuration is as follows:

• OC2A/PCINT15, Bit 7

OC2, Output Compare Match A output: The PB7 pin can serve as an external output for
the Timer/Counter2 Output Compare A. The pin has to be configured as an output
(DDB7 set (one)) to serve this function. The OC2A pin is also the output pin for the PWM
mode timer function.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external inter-
rupt source.

Table 29. Overriding Signals for Alternate Functions in PA3..PA0

Signal Na me PA3/COM3 PA2/COM2 PA1/COM1 PA0/COM0

PUOE LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

PUOV 0 0 0 0

DDOE LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO COM3 COM2 COM1 COM0

Table 30. Port B Pins Alternate Functions

Port Pin Alter nate Functions

PB7
OC2A/PCINT15 (Output Compare and PWM Output A for Timer/Counter2 or Pin
Change Interrupt15).

PB6
OC1B/PCINT14 (Output Compare and PWM Output B for Timer/Counter1 or Pin
Change Interrupt14).

PB5
OC1A/PCINT13 (Output Compare and PWM Output A for Timer/Counter1 or Pin
Change Interrupt13).

PB4
OC0A/PCINT12 (Output Compare and PWM Output A for Timer/Counter0 or Pin
Change Interrupt12).

PB3 MISO/PCINT11 (SPI Bus Master Input/Slave Output or Pin Change Interrupt11).

PB2 MOSI/PCINT10 (SPI Bus Master Output/Slave Input or Pin Change Interrupt10).

PB1 SCK/PCINT9 (SPI Bus Serial Clock or Pin Change Interrupt9).

PB0 SS/PCINT8 (SPI Slave Select input or Pin Change Interrupt8).

64 ATmega169/V
2514P–AVR–07/06

• OC1B/PCINT14, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output
for the Timer/Counter1 Output Compare B. The pin has to be configured as an output
(DDB6 set (one)) to serve this function. The OC1B pin is also the output pin for the PWM
mode timer function.

PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external inter-
rupt source.

• OC1A/PCINT13, Bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output
for the Timer/Counter1 Output Compare A. The pin has to be configured as an output
(DDB5 set (one)) to serve this function. The OC1A pin is also the output pin for the PWM
mode timer function.

PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external inter-
rupt source.

• OC0A/PCINT12, Bit 4

OC0A, Output Compare Match A output: The PB4 pin can serve as an external output
for the Timer/Counter0 Output Compare A. The pin has to be configured as an output
(DDB4 set (one)) to serve this function. The OC0A pin is also the output pin for the PWM
mode timer function.

PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external inter-
rupt source.

• MISO/PCINT11 – Port B, Bi t 3

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB3. When the
SPI is enabled as a Slave, the data direction of this pin is controlled by DDB3. When the
pin is forced to be an input, the pull-up can still be controlled by the PORTB3 bit.

PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external inter-
rupt source.

• MOSI/PCINT10 – Port B, Bi t 2

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI
is enabled as a Master, the data direction of this pin is controlled by DDB2. When the pin
is forced to be an input, the pull-up can still be controlled by the PORTB2 bit.

PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external inter-
rupt source.

• SCK/PCINT9 – Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI
is enabled as a Master, the data direction of this pin is controlled by DDB1. When the pin
is forced to be an input, the pull-up can still be controlled by the PORTB1 bit.

PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt
source.

65

ATmega169/V

2514P–AVR–07/06

• SS/PCINT8 – Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB0. As a Slave, the SPI is activated when this
pin is driven low. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB0. When the pin is forced to be an input, the pull-up can still be con-
trolled by the PORTB0 bit

PCINT8, Pin Change Interrupt Source 8: The PB0 pin can serve as an external interrupt
source.

Table 31 and Table 32 relate the alternate functions of Port B to the overriding signals
shown in Figure 26 on page 60. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

Table 31. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name

PB7/OC2A/
PCINT15

PB6/OC1B/
PCINT14

PB5/OC1A/
PCINT13

PB4/OC0A/
PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE

PVOV OC2A OC1B OC1A OC0A

PTOE – – – –

DIEOE PCINT15 •
PCIE1

PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 •
PCIE1

DIEOV 1 1 1 1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –

66 ATmega169/V
2514P–AVR–07/06

Alter nate Func tion s of Port C The Port C has an alternate function as the SEG5:12 for the LCD Controller

Table 32. Overriding Signals for Alternate Functions in PB3..PB0

Signal
Name

PB3/MISO/
PCINT11

PB2/MOSI/
PCINT10

PB1/SCK/
PCINT9

PB0/SS/
PCINT8

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE
OUTPUT

SPI MSTR
OUTPUT

SCK OUTPUT 0

PTOE – – – –

DIEOE PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 •
PCIE1

DIEOV 1 1 1 1

DI PCINT11 INPUT
SPI MSTR INPUT

PCINT10 INPUT
SPI SLAVE INPUT

PCINT9 INPUT
SCK INPUT

PCINT8 INPUT
SPI SS

AIO – – – –

Table 33. Port C Pins Alternate Functions

Port Pin Alternate Functio n

PC7 SEG5 (LCD Front Plane 5)

PC6 SEG6 (LCD Front Plane 6)

PC5 SEG7 (LCD Front Plane 7)

PC4 SEG8 (LCD Front Plane 8)

PC3 SEG9 (LCD Front Plane 9)

PC2 SEG10 (LCD Front Plane 10)

PC1 SEG11 (LCD Front Plane 11)

PC0 SEG12 (LCD Front Plane 12)

67

ATmega169/V

2514P–AVR–07/06

Table 34 and Table 35 relate the alternate functions of Port C to the overriding signals
shown in Figure 26 on page 60.

Table 34. Overriding Signals for Alternate Functions in PC7..PC4

Signal
Name PC7/SEG5 PC6/SEG6 PC5/SEG7 PC4/SEG8

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG5 SEG6 SEG7 SEG8

Table 35. Overriding Signals for Alternate Functions in PC3..PC0

Signal
Name PC3/SEG9 PC2/SEG10 PC1/SEG11 PC0/SEG12

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG9 SEG10 SEG11 SEG12

68 ATmega169/V
2514P–AVR–07/06

Alter nate Func tion s of Port D The Port D pins with alternate functions are shown in Table 36.

The alternate pin configuration is as follows:

• SEG15 - SEG20 – Port D, Bit 7:2

SEG15-SEG20, LCD front plane 15-20.

• INT0/SEG21 – Port D, Bit 1

INT0, External Interrupt Source 0. The PD1 pin can serve as an external interrupt
source to the MCU.

SEG21, LCD front plane 21.

• ICP1/SEG22 – Port D, Bit 0

ICP1 – Input Capture pin1: The PD0 pin can act as an Input Capture pin for
Timer/Counter1.

SEG22, LCD front plane 22

Table 36. Port D Pins Alternate Functions

Port Pin Alternate F unction

PD7 SEG15 (LCD front plane 15)

PD6 SEG16 (LCD front plane 16)

PD5 SEG17 (LCD front plane 17)

PD4 SEG18 (LCD front plane 18)

PD3 SEG19 (LCD front plane 19)

PD2 SEG20 (LCD front plane 20)

PD1 INT0/SEG21 (External Interrupt0 Input or LCD front plane 21)

PD0 ICP1/SEG22 (Timer/Counter1 Input Capture pin or LCD front plane 22)

69

ATmega169/V

2514P–AVR–07/06

Table 37 and Table 38 relates the alternate functions of Port D to the overriding signals
shown in Figure 26 on page 60.

Table 37. Overriding Signals for Alternate Functions PD7..PD4

Signal
Name PD7/SEG15 PD6/SEG16 PD5/SEG17 PD4/SEG18

PUOE LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

PUOV 0 0 0 0

DDOE LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

DIEOV 0 0 0 0

DI – – – –

AIO SEG15 SEG16 SEG17 SEG18

Table 38. Overriding Signals for Alternate Functions in PD3..PD0

Signal
Name PD3/SEG19 PD2/SEG20 PD1/INT0/SEG21 PD0/ICP1/SEG22

PUOE LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>4)

LCDEN •
(LCDPM>4)

PUOV 0 0 0 0

DDOE LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>4)

LCDEN •
(LCDPM>4)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN + (INT0
ENABLE)

LCDEN •
(LCDPM>4)

DIEOV 0 0 LCDEN • (INT0
ENABLE)

0

DI – – INT0 INPUT ICP1 INPUT

AIO – –

70 ATmega169/V
2514P–AVR–07/06

Alter nate Func tion s of Port E The Port E pins with alternate functions are shown in Table 39.

• PCINT7 – Port E, Bit 7

PCINT7, Pin Change Interrupt Source 7: The PE7 pin can serve as an external interrupt
source.

CLKO, Divided System Clock: The divided system clock can be output on the PE7 pin.
The divided system clock will be output if the CKOUT Fuse is programmed, regardless
of the PORTE7 and DDE7 settings. It will also be output during reset.

• DO/PCINT6 – Port E, Bit 6

DO, Universal Serial Interface Data output.

PCINT6, Pin Change Interrupt Source 6: The PE6 pin can serve as an external interrupt
source.

• DI/SDA/PCINT5 – Port E, Bit 5

DI, Universal Serial Interface Data input.

SDA, Two-wire Serial Interface Data:

PCINT5, Pin Change Interrupt Source 5: The PE5 pin can serve as an external interrupt
source.

• USCK/SCL/PCINT4 – Port E, Bit 4

USCK, Universal Serial Interface Clock.

SCL, Two-wire Serial Interface Clock.

PCINT4, Pin Change Interrupt Source 4: The PE4 pin can serve as an external interrupt
source.

• AIN1/PCINT3 – Port E, Bit 3

AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative
input of the Analog Comparator.

PCINT3, Pin Change Interrupt Source 3: The PE3 pin can serve as an external interrupt
source.

Table 39. Port E Pins Alternate Functions

Port Pin Alter nate Function

PE7
PCINT7 (Pin Change Interrupt7)
CLKO (Divided System Clock)

PE6 DO/PCINT6 (USI Data Output or Pin Change Interrupt6)

PE5 DI/SDA/PCINT5 (USI Data Input or TWI Serial DAta or Pin Change Interrupt5)

PE4
USCK/SCL/PCINT4 (USART External Clock Input/Output or TWI Serial Clock or
Pin Change Interrupt4)

PE3 AIN1/PCINT3 (Analog Comparator Negative Input or Pin Change Interrupt3)

PE2
XCK/AIN0/ PCINT2 (USART External Clock or Analog Comparator Positive Input
or Pin Change Interrupt2)

PE1 TXD/PCINT1 (USART Transmit Pin or Pin Change Interrupt1)

PE0 RXD/PCINT0 (USART Receive Pin or Pin Change Interrupt0)

71

ATmega169/V

2514P–AVR–07/06

• XCK/AIN0/PCINT2 – Port E, Bit 2

XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the
clock is output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the
USART operates in synchronous mode.

AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive
input of the Analog Comparator.

PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt
source.

• TXD/PCINT1 – Port E, Bit 1

TXD0, UART0 Transmit pin.

PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt
source.

• RXD/PCINT0 – Port E, Bit 0

RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the
USART Receiver is enabled this pin is configured as an input regardless of the value of
DDE0. When the USART forces this pin to be an input, a logical one in PORTE0 will turn
on the internal pull-up.

PCINT0, Pin Change Interrupt Source 0: The PE0 pin can serve as an external interrupt
source.

Table 40 and Table 41 relates the alternate functions of Port E to the overriding signals
shown in Figure 26 on page 60.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 40. Overriding Signals for Alternate Functions PE7..PE4

Signal
Name PE7/PCINT7

PE6/DO/
PCINT6

PE5/DI/SDA/
PCINT5

PE4/USCK/SCL/
PCINT4

PUOE 0 0 USI_TWO-WIRE 0

PUOV 0 0 0 0

DDOE CKOUT(1) 0 USI_TWO-WIRE USI_TWO-WIRE

DDOV 1 0 (SDA + PORTE5) •
DDE5

(USI_SCL_HOLD +
PORTE4) + DDE4

PVOE CKOUT(1) USI_THREE-
WIRE

USI_TWO-WIRE •
DDE5

USI_TWO-WIRE •
DDE4

PVOV clkI/O DO 0 0

PTOE – – – USITC

DIEOE PCINT7 •
PCIE0

PCINT6 •
PCIE0

(PCINT5 • PCIE0)
+ USISIE

(PCINT4 • PCIE0) +
USISIE

DIEOV 1 1 1 1

DI PCINT7
INPUT

PCINT6
INPUT

DI/SDA INPUT

PCINT5 INPUT

USCKL/SCL INPUT

PCINT4 INPUT

AIO – – – –

72 ATmega169/V
2514P–AVR–07/06

Note: 1. AIN0D and AIN1D is described in “Digital Input Disable Register 1 – DIDR1” on page
192.

Alter nate Func tion s of Port F The Port F has an alternate function as analog input for the ADC as shown in Table 42.
If some Port F pins are configured as outputs, it is essential that these do not switch
when a conversion is in progress. This might corrupt the result of the conversion. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and
PF4(TCK) will be activated even if a reset occurs.

• TDI, ADC7 – Port F, Bit 7

ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin.

Table 41. Overriding Signals for Alternate Functions in PE3..PE0

Signal
Name

PE3/AIN1/
PCINT3

PE2/XCK/AIN0/
PCINT2

PE1/TXD/
PCINT1 PE0/RXD/PCINT0

PUOE 0 0 TXEN RXEN

PUOV 0 0 0 PORTE0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE 0 XCK OUTPUT
ENABLE

TXEN 0

PVOV 0 XCK TXD 0

PTOE – – – –

DIEOE (PCINT3 •
PCIE0) +
AIN1D(1)

(PCINT2 • PCIE0) +
AIN0D(1)

PCINT1 •
PCIE0

PCINT0 • PCIE0

DIEOV PCINT3 • PCIE0 PCINT2 • PCIE0 1 1

DI PCINT3 INPUT XCK/PCINT2 INPUT PCINT1 INPUT RXD/PCINT0
INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 42. Port F Pins Alternate Functions

Port Pin Alternate F unction

PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Test Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG Test mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)

73

ATmega169/V

2514P–AVR–07/06

• TDO, ADC6 – Port F, Bit 6

ADC6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Regis-
ter. When the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP
states that shift out data, the TDO pin drives actively. In other states the pin is pulled
high.

• TMS, ADC5 – Port F, Bit 5

ADC5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O
pin.

• TCK, ADC4 – Port F, Bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

• ADC3 - ADC0 – Port F, Bit 3:0

Analog to Digital Converter, Channel 3-0.

Table 43. Overriding Signals for Alternate Functions in PF7..PF4

Signal
Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR +
SHIFT_DR

0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

PTOE – – – –

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO TDI
ADC7 INPUT

ADC6 INPUT TMS
ADC5 INPUT

TCK
ADC4 INPUT

74 ATmega169/V
2514P–AVR–07/06

Alter nate Func tion s of Port G The alternate pin configuration is as follows:

The alternate pin configuration is as follows:

• T0/SEG23 – Port G, Bit 4

T0, Timer/Counter0 Counter Source.

SEG23, LCD front plane 23

• T1/SEG24 – Port G, Bit 3

T1, Timer/Counter1 Counter Source.

SEG24, LCD front plane 24

• SEG4 – Port G, Bi t 2

SEG4, LCD front plane 4

• SEG13 – Port G, Bit 1

SEG13, Segment driver 13

• SEG14 – Port G, Bit 0

SEG14, LCD front plane 14

Table 44. Overriding Signals for Alternate Functions in PF3..PF0

Signal
Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 45. Port G Pins Alternate Functions

Port Pin Altern ate Functio n

PG4 T0/SEG23 (Timer/Counter0 Clock Input or LCD Front Plane 23)

PG3 T1/SEG24 (Timer/Counter1 Clock Input or LCD Front Plane 24)

PG2 SEG4 (LCD Front Plane 4)

PG1 SEG13 (LCD Front Plane 13)

PG0 SEG14 (LCD Front Plane 14)

75

ATmega169/V

2514P–AVR–07/06

Table 45 and Table 46 relates the alternate functions of Port G to the overriding signals
shown in Figure 26 on page 60.

Table 46. Overriding Signals for Alternate Functions in PG4

Signal
Name PG4/T0/SEG23

PUOE LCDEN • (LCDPM>5)

PUOV 0

DDOE LCDEN • (LCDPM>5)

DDOV 1

PVOE 0

PVOV 0

PTOE – – – –

DIEOE LCDEN • (LCDPM>5)

DIEOV 0

DI T0 INPUT

AIO SEG23

Table 47. Overriding Signals for Alternate Functions in PG3:0

Signal
Name PG3/T1/SEG24 PG2/SEG4 PG1/SEG13 PG0/SEG14

PUOE LCDEN •
(LCDPM>6)

LCDEN LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

PUOV 0 0 0 0

DDOE LCDEN •
(LCDPM>6)

LCDEN LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN •
(LCDPM>6)

LCDEN LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

DIEOV 0 0 0 0

DI T1 INPUT – – –

AIO SEG24 SEG4 SEG13 SEG14

