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Data Modes There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 67 and Figure 68. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 67 and Table 68, as done below:

Figur e 67.  SPI Transfer Format with CPHA = 0

Figur e 68.  SPI Transfer Format with CPHA = 1

Table 70.  CPOL Functionality

Leading Edg e Trailing eDg e SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)

mode 0

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)

mode 1

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
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USART The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:
• Full Duple x Operation (I ndependent Serial Receive  and Transmit Registe rs)
• Asyn chrono us o r Sync hronous Operatio n
• Master or Slave Clocked Sync hronou s Operatio n
• High Resolution Baud Rate  Generator
• Suppor ts Serial Fra mes with 5, 6, 7, 8, or 9 Data  Bits and 1 or  2 Stop Bits
• Odd or Even  Parity Generati on and Pari ty Ch eck Suppor ted by Hardware
• Data OverR un Detection
• Framing Er ror Detection
• Noise Filteri ng Includes False Star t Bit Detection and Digi tal L ow Pass Fil ter
• Three Separate Interr upts o n TX Complete, TX Data Regi ster Empty and RX Complete
• Multi-pr ocessor Comm unication Mode
• Double Speed Async hrono us Co mmunication Mode

The PRUSART0 bit in “Power Reduction Register - PRR” on page 34 must be written to
zero to enable USART module.

Overview A simplified block diagram of the USART Transmitter is shown in Figure 69. CPU acces-
sible I/O Registers and I/O pins are shown in bold.

Figur e 69.  USART Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 37 on page 69, and Table 31 on page 65 for
USART pin placement. 
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The dashed boxes in the block diagram separate the three main parts of the USART
(listed from the top): Clock Generator, Transmitter and Receiver. Control Registers are
shared by all units. The Clock Generation logic consists of synchronization logic for
external clock input used by synchronous slave operation, and the baud rate generator.
The XCK (Transfer Clock) pin is only used by synchronous transfer mode. The Trans-
mitter consists of a single write buffer, a serial Shift Register, Parity Generator and
Control logic for handling different serial frame formats. The write buffer allows a contin-
uous transfer of data without any delay between frames. The Receiver is the most
complex part of the USART module due to its clock and data recovery units. The recov-
ery units are used for asynchronous data reception. In addition to the recovery units, the
Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDR). The Receiver supports the same frame formats as the Transmit-
ter, and can detect Frame Error, Data OverRun and Parity Errors.

AVR USART vs. AVR UART – 
Compat ibil ity

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.

• Baud Rate Generation.

• Transmitter Operation.

• Transmit Buffer Functionality.

• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in
some special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a 
circular FIFO buffer. Therefore the UDR must only be read once for each incoming 
data! More important is the fact that the Error Flags (FE and DOR) and the ninth 
data bit (RXB8) are buffered with the data in the receive buffer. Therefore the status 
bits must always be read before the UDR Register is read. Otherwise the error 
status will be lost since the buffer state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by 
allowing the received data to remain in the serial Shift Register (see Figure 69) if the 
Buffer Registers are full, until a new start bit is detected. The USART is therefore 
more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register
location:

• CHR9 is changed to UCSZ2.

• OR is changed to DOR.

Cloc k Generation The Clock Generation logic generates the base clock for the Transmitter and Receiver.
The USART supports four modes of clock operation: Normal asynchronous, Double
Speed asynchronous, Master synchronous and Slave synchronous mode. The UMSEL
bit in USART Control and Status Register C (UCSRC) selects between asynchronous
and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2X found in the UCSRA Register. When using synchronous mode (UMSEL = 1),
the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock
source is internal (Master mode) or external (Slave mode). The XCK pin is only active
when using synchronous mode.

Figure 70 shows a block diagram of the clock generation logic.
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Figur e 70.  Clock Generation Logic, Block Diagram

Signal description:

txcl k Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc XTAL pin frequency (System Clock).

Internal Cloc k Generat ion – 
The Baud Rate  Generator

Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 70.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function
as a programmable prescaler or baud rate generator. The down-counter, running at sys-
tem clock (fosc), is loaded with the UBRR value each time the counter has counted down
to zero or when the UBRRL Register is written. A clock is generated each time the
counter reaches zero. This clock is the baud rate generator clock output (=
fosc/(UBRR+1)). The Transmitter divides the baud rate generator clock output by 2, 8 or
16 depending on mode. The baud rate generator output is used directly by the
Receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSEL,
U2X and DDR_XCK bits.

Table 71 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRR value for each mode of operation using an internally generated
clock source.
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Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095)

Some examples of UBRR values for some system clock frequencies are found in Table
79 (see page 175).

Doub le Speed Operation 
(U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only
has effect for the asynchronous operation. Set this bit to zero when using synchronous
operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
Receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External Cloc k External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 70 for details.

External clock input from the XCK pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
Receiver. This process introduces a two CPU clock period delay and therefore the max-
imum external XCK clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Table 71.  Equations for Calculating Baud Rate Register Setting

Operati ng Mo de
Equatio n for Calculating 

Baud Rate(1)
Equatio n for Calculating 

UBRR Value

Asynchronous Normal 
mode (U2X = 0)

Asynchronous Double 
Speed mode (U2X = 1)

Synchronous Master 
mode

BAUD
fOSC

16 UBRR 1+$ %
---------------------------------------= UBRR

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+$ %
-----------------------------------= UBRR

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRR 1+$ %
-----------------------------------= UBRR

fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
-----------'
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Synchronous  Cloc k Operation When synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock
input (Slave) or clock output (Master). The dependency between the clock edges and
data sampling or data change is the same. The basic principle is that data input (on
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Figur e 71.  Synchronous Mode XCK Timing.

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 71 shows, when UCPOL is zero the data will
be changed at rising XCK edge and sampled at falling XCK edge. If UCPOL is set, the
data will be changed at falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 72 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figur e 72.  Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
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Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in
UCSRB and UCSRC. The Receiver and Transmitter use the same setting. Note that
changing the setting of any of these bits will corrupt all ongoing communication for both
the Receiver and Transmitter. 

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame.
The USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The
Receiver ignores the second stop bit. An FE (Frame Error) will therefore only be
detected in the cases where the first stop bit is zero.

Pari ty  Bi t Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXC Flag can be used to check that the Transmitter has completed all transfers, and the
RXC Flag can be used to check that there are no unread data in the receive buffer. Note
that the TXC Flag must be cleared before each transmission (before UDR is written) if it
is used for this purpose.

Peven dn 1– ( d3 d2 d1 d0 0
Podd

" " " " " "
dn 1– ( d3 d2 d1 d0 1" " " " " "

=
=
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The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers.

Note: 1. See “About Code Examples” on page 6.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
baud and control registers, and for these types of applications the initialization code can
be placed directly in the main routine, or be combined with initialization code for other
I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

sts UBRRH, r17

sts UBRRL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

sts UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBS)|(3<<UCSZ0)

sts UCSRC,r16

ret

C Code Example(1)

#define FOSC 1843200// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main( void )

{

...

USART_Init ( MYUBRR );

...

}

void USART_Init( unsigned int ubrr)

{

/* Set baud rate */

UBRRH = (unsigned char)(ubrr>>8);

UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<USBS)|(3<<UCSZ0);

}
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Data Transmission – The 
USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the
UCSRB Register. When the Transmitter is enabled, the normal port operation of the
TxD pin is overridden by the USART and given the function as the Transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCK pin will
be overridden and used as transmission clock.

Sending Frame s wi th 5 to 8 
Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDR I/O location. The
buffered data in the transmit buffer will be moved to the Shift Register when the Shift
Register is ready to send a new frame. The Shift Register is loaded with new data if it is
in idle state (no ongoing transmission) or immediately after the last stop bit of the previ-
ous frame is transmitted. When the Shift Register is loaded with new data, it will transfer
one complete frame at the rate given by the Baud Register, U2X bit or by XCK depend-
ing on mode of operation.

The following code examples show a simple USART transmit function based on polling
of the Data Register Empty (UDRE) Flag. When using frames with less than eight bits,
the most significant bits written to the UDR are ignored. The USART has to be initialized
before the function can be used. For the assembly code, the data to be sent is assumed
to be stored in Register R16

Note: 1. See “About Code Examples” on page 6.

The function simply waits for the transmit buffer to be empty by checking the UDRE
Flag, before loading it with new data to be transmitted. If the Data Register Empty inter-
rupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

sts UDR,r16

ret

C Code Example(1)

void USART_Transmit( unsigned char data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRA & (1<<UDRE)) )

;

/* Put data into buffer, sends the data */

UDR = data;

}
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Sending Frame s wi th 9 Data 
Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in
UCSRB before the low byte of the character is written to UDR. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSRB is static. For example, only the TXB8 bit of the UCSRB
Register is used after initialization.

2. See “About Code Examples” on page 6.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRB,TXB8

sbrc r17,0

sbi UCSRB,TXB8

; Put LSB data (r16) into buffer, sends the data

sts UDR,r16

ret

C Code Example(1)(2)

void USART_Transmit( unsigned int data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRA & (1<<UDRE))) )

;

/* Copy 9th bit to TXB8 */

UCSRB &= ~(1<<TXB8);

if ( data & 0x0100 )

UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDR = data;

}
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Transmit ter Flags and 
Interru pts

The USART Transmitter has two flags that indicate its state: USART Data Register
Empty (UDRE) and Transmit Complete (TXC). Both flags can be used for generating
interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRA Register.

When the Data Register Empty Interrupt Enable (UDRIE) bit in UCSRB is written to one,
the USART Data Register Empty Interrupt will be executed as long as UDRE is set (pro-
vided that global interrupts are enabled). UDRE is cleared by writing UDR. When
interrupt-driven data transmission is used, the Data Register Empty interrupt routine
must either write new data to UDR in order to clear UDRE or disable the Data Register
Empty interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the Transmit
Shift Register has been shifted out and there are no new data currently present in the
transmit buffer. The TXC Flag bit is automatically cleared when a transmit complete
interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC
Flag is useful in half-duplex communication interfaces (like the RS-485 standard), where
a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART
Transmit Complete Interrupt will be executed when the TXC Flag becomes set (pro-
vided that global interrupts are enabled). When the transmit complete interrupt is used,
the interrupt handling routine does not have to clear the TXC Flag, this is done automat-
ically when the interrupt is executed.

Parity Generator The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPM1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

Disabling the  Transmi tter The disabling of the Transmitter (setting the TXEN to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift
Register and Transmit Buffer Register do not contain data to be transmitted. When dis-
abled, the Transmitter will no longer override the TxD pin.
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Data Reception – The 
USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the
UCSRB Register to one. When the Receiver is enabled, the normal pin operation of the
RxD pin is overridden by the USART and given the function as the Receiver’s serial
input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the
XCK pin will be used as transfer clock.

Receiving Fra mes wi th 5 to 8 
Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCK clock, and shifted into the Receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the Receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the Receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDR I/O
location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete (RXC) Flag. When using frames with less than eight bits the
most significant bits of the data read from the UDR will be masked to zero. The USART
has to be initialized before the function can be used.

Note: 1. See “About Code Examples” on page 6.

The function simply waits for data to be present in the receive buffer by checking the
RXC Flag, before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR

ret

C Code Example(1)

unsigned char USART_Receive( void )

{

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) )

;

/* Get and return received data from buffer */

return UDR;

}
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Receiving Fra mes wit h 9 Data 
Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in
UCSRB before reading the low bits from the UDR. This rule applies to the FE, DOR and
UPE Status Flags as well. Read status from UCSRA, then data from UDR. Reading the
UDR I/O location will change the state of the receive buffer FIFO and consequently the
TXB8, FE, DOR and UPE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.

Note: 1. See “About Code Examples” on page 6.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<UPE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) )

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if ( status & (1<<FE)|(1<<DOR)|(1<<UPE) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}
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The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Receive Compe te Flag and 
Interru pt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete interrupt will be executed as long as the RXC Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver  Error Flags The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR)
and Parity Error (UPE). All can be accessed by reading UCSRA. Common for the Error
Flags is that they are located in the receive buffer together with the frame for which they
indicate the error status. Due to the buffering of the Error Flags, the UCSRA must be
read before the receive buffer (UDR), since reading the UDR I/O location changes the
buffer read location. Another equality for the Error Flags is that they can not be altered
by software doing a write to the flag location. However, all flags must be set to zero
when the UCSRA is written for upward compatibility of future USART implementations.
None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE Flag is zero when the stop bit was correctly
read (as one), and the FE Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC
since the Receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition.
A Data OverRun occurs when the receive buffer is full (two characters), it is a new char-
acter waiting in the Receive Shift Register, and a new start bit is detected. If the DOR
Flag is set there was one or more serial frame lost between the frame last read from
UDR, and the next frame read from UDR. For compatibility with future devices, always
write this bit to zero when writing to UCSRA. The DOR Flag is cleared when the frame
received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPE) Flag indicates that the next frame in the receive buffer had a Par-
ity Error when received. If Parity Check is not enabled the UPE bit will always be read
zero. For compatibility with future devices, always set this bit to zero when writing to
UCSRA. For more details see “Parity Bit Calculation” on page 157 and “Parity Checker”
on page 165.
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Parity Checker The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type
of Parity Check to be performed (odd or even) is selected by the UPM0 bit. When
enabled, the Parity Checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (UPE) Flag can then be read by software to check if the frame had a Parity Error.

The UPE bit is set if the next character that can be read from the receive buffer had a
Parity Error when received and the Parity Checking was enabled at that point (UPM1 =
1). This bit is valid until the receive buffer (UDR) is read.

Disabling the  Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXEN is set to zero)
the Receiver will no longer override the normal function of the RxD port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost

Flus hing the Receive  Buf fer The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDR I/O loca-
tion until the RXC Flag is cleared. The following code example shows how to flush the
receive buffer.

Note: 1. See “About Code Examples” on page 6.

Async hronous Data 
Reception

The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxD pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

Assembly Code Example(1)

USART_Flush:

sbis UCSRA, RXC

ret

in r16, UDR

rjmp USART_Flush

C Code Example(1)

void USART_Flush( void )

{

unsigned char dummy;

while ( UCSRA & (1<<RXC) ) dummy = UDR;

}
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Asy nchronous  Cloc k 
Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 73 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double
Speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the Double Speed mode
(U2X = 1) of operation. Samples denoted zero are samples done when the RxD line is
idle (i.e., no communication activity).

Figur e 73.  Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the Receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

Asy nchronous  Data Recovery When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in Normal
mode and eight states for each bit in Double Speed mode. Figure 74 shows the sam-
pling of the data bits and the parity bit. Each of the samples is given a number that is
equal to the state of the recovery unit.

Figur e 74.  Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxD pin. The recovery process is then repeated until
a complete frame is received. Including the first stop bit. Note that the Receiver only
uses the first stop bit of a frame.
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Figure 75 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

Figur e 75.  Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FE) Flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For Normal Speed mode, the first low level
sample can be at point marked (A) in Figure 75. For Double Speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the Receiver.

Asy nchronous  Operatio nal 
Range

The operational range of the Receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
Receiver does not have a similar (see Table 72) base frequency, the Receiver will not
be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 72 and Table 73 list the maximum receiver baud rate error that can be tolerated.
Note that Normal Speed mode has higher toleration of baud rate variations.
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STOP 1

1 2 3 4 5 6 0/1
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Sample
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Sample
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Rslow
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-------------------------------------------= Rfast
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The recommendations of the maximum receiver baud rate error was made under the
assumption that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRR value that gives an acceptable low error can be
used if possible.

Table 72.  Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2X = 0)

D
# (Data+Parity  Bit) Rslo w (%) Rfas t (%) Max Total Err or (%)

Recom mended Ma x 
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 73.  Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2X = 1)

D
# (Data+Parity  Bit) Rslo w (%) Rfas t (%) Max Total Err or (%)

Recom mended Ma x 
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
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Multi-pr ocessor 
Comm unication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a fil-
tering function of incoming frames received by the USART Receiver. Frames that do not
contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCM setting, but has to be used differently when it is a part
of a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the Receiver is set up
for frames with nine data bits, then the ninth bit (RXB8) is used for identifying address
and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.

Using MPCM For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ =
7). The ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when
a data frame (TXB = 0) is being transmitted. The slave MCUs must in this case be set to
use a 9-bit character frame format. 

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA 
is set).

2. The Master MCU sends an address frame, and all slaves receive and read this 
frame. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been 
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next 
address byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is 
received. The other Slave MCUs, which still have the MPCM bit set, will ignore 
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed 
MCU sets the MPCM bit and waits for a new address frame from master. The 
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same charac-
ter size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to
use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit.
The MPCM bit shares the same I/O location as the TXC Flag and this might accidentally
be cleared when using SBI or CBI instructions.
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USART Register 
Description

USART I/O Data Regis ter – 
UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDR. The Transmit
Data Buffer Register (TXB) will be the destination for data written to the UDR Register
location. Reading the UDR Register location will return the contents of the Receive Data
Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is
set. Data written to UDR when the UDRE Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer, and the Transmitter is enabled,
the Transmitter will load the data into the Transmit Shift Register when the Shift Register
is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed. Due to this behavior of the receive buffer, do not use
Read-Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit
test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

USART Control and Status 
Register A – UCSRA

• Bit  7 – RXC: USART Receive Comple te

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXC bit will become zero.
The RXC Flag can be used to generate a Receive Complete interrupt (see description of
the RXCIE bit).

• Bit 6 – TXC: US ART Transmit C omplete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR). The TXC
Flag bit is automatically cleared when a transmit complete interrupt is executed, or it can
be cleared by writing a one to its bit location. The TXC Flag can generate a Transmit
Complete interrupt (see description of the TXCIE bit).

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDR (Read)

TXB[7:0] UDR (Writ e)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXC TXC UDRE FE DOR UPE U2X MPCM UCSRA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 5 – UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If
UDRE is one, the buffer is empty, and therefore ready to be written. The UDRE Flag can
generate a Data Register Empty interrupt (see description of the UDRIE bit).

UDRE is set after a reset to indicate that the Transmitter is ready.

• Bit  4 – FE: Frame Err or

This bit is set if the next character in the receive buffer had a Frame Error when
received. I.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRA.

• Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the Receive Shift
Register, and a new start bit is detected. This bit is valid until the receive buffer (UDR) is
read. Always set this bit to zero when writing to UCSRA.

• Bit  2 – UPE: USART Pari ty  Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPM1 = 1). This bit is valid until the
receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit  1 – U2X: Doub le the USART Transmissi on Spee d

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

• Bit  0 – MPCM: Multi- processo r Communica tion Mod e

This bit enables the Multi-processor Communication mode. When the MPCM bit is writ-
ten to one, all the incoming frames received by the USART Receiver that do not contain
address information will be ignored. The Transmitter is unaffected by the MPCM setting.
For more detailed information see “Multi-processor Communication Mode” on page 169.
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USART Control and Status 
Register B – UCSRB

• Bit 7 – RXCIE: RX Comple te Interrupt  Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC bit in UCSRA is set.

• Bit 6 – TXCIE: TX Comple te Interrupt  Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC bit in UCSRA is set.

• Bit  5 – UDRIE: USART Data Regist er Empt y Int errupt  Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty inter-
rupt will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in
SREG is written to one and the UDRE bit in UCSRA is set.

• Bit  4 – RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxD pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE, DOR, and UPE Flags.

• Bit  3 – TXEN: Transmi tter  Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override nor-
mal port operation for the TxD pin when enabled. The disabling of the Transmitter
(writing TXEN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted. When disabled, the Transmitter will no longer
override the TxD port.

• Bit  2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use. 

• Bit  1 – RXB8:  Receive Data Bi t 8

RXB8 is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDR.

• Bit  0 – TXB8:  Transmi t Data Bi t 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial
frames with nine data bits. Must be written before writing the low bits to UDR.

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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USART Control and Status 
Register C – UCSRC

• Bit 6 – UMSEL: USA RT Mode Select

This bit selects between asynchronous and synchronous mode of operation.

• Bit  5:4 – UPM1:0: Pari ty Mode

These bits enable and set type of parity generation and check. If enabled, the Transmit-
ter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPM0 setting. If a mismatch is detected, the UPE Flag in UCSRA will be
set.

• Bit  3 – USBS: Stop Bi t Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Bit 7 6 5 4 3 2 1 0

– UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 74.  UMSEL Bit Settings

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 75.  UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 76.  USBS Bit Settings

USBS Stop Bit(s )

0 1-bit

1 2-bit
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• Bit  2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit  0 – UCPOL: Clo ck Polari ty

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate  Registers – 
UBRRL and UBRRH

• Bit  15:12 – Reserve d Bi ts

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

• Bit 11:0 – UBR R11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the eight least significant bits of the
USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Table 77.  UCSZ Bits Settings

UCSZ2 UCSZ1 UCSZ0 Character  Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 78.  UCPOL Bit Settings

UCPOL
Transmitted Data Chang ed (Output of 
TxD Pin )

Receive d Data Sampled (Input on 
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR[11: 8] UBRRH

UBRR[7:0 ] UBRRL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Examples of Baud Rate 
Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for
asynchronous operation can be generated by using the UBRR settings in Table 79.
UBRR values which yield an actual baud rate differing less than 0.5% from the target
baud rate, are bold in the table. Higher error ratings are acceptable, but the Receiver will
have less noise resistance when the error ratings are high, especially for large serial
frames (see “Asynchronous Operational Range” on page 167). The error values are cal-
culated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------------- 1–) *
+ , 100%-=

Table 79.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud 
Rate 
(bps)

fosc = 1.0000 MHz fosc  = 1.8432 MHz fosc  = 2.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
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Table 80.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc  = 3.6864 MHz fosc = 4.0000 MHz fosc  = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%
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Table 81.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 8.0000 MHz fosc  = 11.0592 MHz fosc  = 14.7456 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%
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Table 82.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc  = 16.0000 MHz fosc  = 18.4320 MHz fosc  = 20.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%
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USI – Univer sal Serial 
Interface

The Universal Serial Interface, or USI, provides the basic hardware resources needed
for serial communication. Combined with a minimum of control software, the USI allows
significantly higher transfer rates and uses less code space than solutions based on
software only. Interrupts are included to minimize the processor load. The main features
of the USI are:
• Two-wire Syn chronou s Data Transfer (Ma ster or Sla ve)
• Three-wire Sync hronou s Data Transfer (Master  or Sla ve)
• Data Received Interrupt
• Wakeup  from Idle Mode
• In Two-wir e Mode: Wake-up fr om All Sleep Modes, Inc luding P ower-down Mode
• Two-wire Start Conditi on Detecto r wit h Interrupt  Capabi lity

Overview A simplified block diagram of the USI is shown on Figure 76. For the actual placement of
I/O pins, refer to “Pinout ATmega169” on page 2. CPU accessible I/O Registers, includ-
ing I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the “USI Register Descriptions” on page 185.

Figur e 76.  Universal Serial Interface, Block Diagram

The 8-bit Shift Register is directly accessible via the data bus and contains the incoming
and outgoing data. The register has no buffering so the data must be read as quickly as
possible to ensure that no data is lost. The most significant bit is connected to one of two
output pins depending of the wire mode configuration. A transparent latch is inserted
between the Serial Register Output and output pin, which delays the change of data out-
put to the opposite clock edge of the data input sampling. The serial input is always
sampled from the Data Input (DI) pin independent of the configuration.

The 4-bit counter can be both read and written via the data bus, and can generate an
overflow interrupt. Both the Serial Register and the counter are clocked simultaneously
by the same clock source. This allows the counter to count the number of bits received
or transmitted and generate an interrupt when the transfer is complete. Note that when
an external clock source is selected the counter counts both clock edges. In this case
the counter counts the number of edges, and not the number of bits. The clock can be
selected from three different sources: The USCK pin, Timer/Counter0 Compare Match
or from software.
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The Two-wire clock control unit can generate an interrupt when a start condition is
detected on the Two-wire bus. It can also generate wait states by holding the clock pin
low after a start condition is detected, or after the counter overflows.

Functional Descriptions

Three-wire  Mode The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0
and 1, but does not have the slave select (SS) pin functionality. However, this feature
can be implemented in software if necessary. Pin names used by this mode are: DI, DO,
and USCK.

Figur e 77.  Three-wire Mode Operation, Simplified Diagram

Figure 77 shows two USI units operating in Three-wire mode, one as Master and one as
Slave. The two Shift Registers are interconnected in such way that after eight USCK
clocks, the data in each register are interchanged. The same clock also increments the
USI’s 4-bit counter. The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be
used to determine when a transfer is completed. The clock is generated by the Master
device software by toggling the USCK pin via the PORT Register or by writing a one to
the USITC bit in USICR.

Figur e 78.  Three-wire Mode, Timing Diagram
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The Three-wire mode timing is shown in Figure 78. At the top of the figure is a USCK
cycle reference. One bit is shifted into the USI Shift Register (USIDR) for each of these
cycles. The USCK timing is shown for both external clock modes. In External Clock
mode 0 (USICS0 = 0), DI is sampled at positive edges, and DO is changed (Data Regis-
ter is shifted by one) at negative edges. External Clock mode 1 (USICS0 = 1) uses the
opposite edges versus mode 0, i.e., samples data at negative and changes the output at
positive edges. The USI clock modes corresponds to the SPI data mode 0 and 1.

Referring to the timing diagram (Figure 78.), a bus transfer involves the following steps:

1. The Slave device and Master device sets up its data output and, depending on 
the protocol used, enables its output driver (mark A and B). The output is set up 
by writing the data to be transmitted to the Serial Data Register. Enabling of the 
output is done by setting the corresponding bit in the port Data Direction Regis-
ter. Note that point A and B does not have any specific order, but both must be at 
least one half USCK cycle before point C where the data is sampled. This must 
be done to ensure that the data setup requirement is satisfied. The 4-bit counter 
is reset to zero.

2. The Master generates a clock pulse by software toggling the USCK line twice (C 
and D). The bit value on the slave and master’s data input (DI) pin is sampled by 
the USI on the first edge (C), and the data output is changed on the opposite 
edge (D). The 4-bit counter will count both edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.

4. After eight clock pulses (i.e., 16 clock edges) the counter will overflow and indi-
cate that the transfer is completed. The data bytes transferred must now be 
processed before a new transfer can be initiated. The overflow interrupt will wake 
up the processor if it is set to Idle mode. Depending of the protocol used the 
slave device can now set its output to high impedance.

SPI Master Operation 
Example

The following code demonstrates how to use the USI module as a SPI Master:
SPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

ldi r16,(1<<USIWM0)|(1<<USICS1)|(1<<USICLK)|(1<<USITC)

SPITransfer_loop:

sts USICR,r16

lds r16, USISR

sbrs r16, USIOIF

rjmp SPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example
assumes that the DO and USCK pins are enabled as output in the DDRE Register. The
value stored in register r16 prior to the function is called is transferred to the Slave
device, and when the transfer is completed the data received from the Slave is stored
back into the r16 Register.

The second and third instructions clears the USI Counter Overflow Flag and the USI
counter value. The fourth and fifth instruction set Three-wire mode, positive edge Shift
Register clock, count at USITC strobe, and toggle USCK. The loop is repeated 16 times.
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The following code demonstrates how to use the USI module as a SPI Master with max-
imum speed (fsck = fck/4):

SPITransfer_Fast:

sts USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16 ; LSB

sts USICR,r17

lds r16,USIDR

ret

SPI Slave Operation Example The following code demonstrates how to use the USI module as a SPI Slave:
init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

sts USICR,r16

...

SlaveSPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

SlaveSPITransfer_loop:

lds r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example
assumes that the DO is configured as output and USCK pin is configured as input in the
DDR Register. The value stored in register r16 prior to the function is called is trans-
ferred to the master device, and when the transfer is completed the data received from
the Master is stored back into the r16 Register.



183

ATmega169/V

2514P–AVR–07/06

Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge Shift Register clock.
The loop is repeated until the USI Counter Overflow Flag is set.

Two-wire Mo de The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew
rate limiting on outputs and input noise filtering. Pin names used by this mode are SCL
and SDA.

Figur e 79.  Two-wire Mode Operation, Simplified Diagram

Figure 79 shows two USI units operating in Two-wire mode, one as Master and one as
Slave. It is only the physical layer that is shown since the system operation is highly
dependent of the communication scheme used. The main differences between the Mas-
ter and Slave operation at this level, is the serial clock generation which is always done
by the Master, and only the Slave uses the clock control unit. Clock generation must be
implemented in software, but the shift operation is done automatically by both devices.
Note that only clocking on negative edge for shifting data is of practical use in this mode.
The slave can insert wait states at start or end of transfer by forcing the SCL clock low.
This means that the Master must always check if the SCL line was actually released
after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate
that the transfer is completed. The clock is generated by the master by toggling the
USCK pin via the PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the
TWI-bus, must be implemented to control the data flow.
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Figur e 80.  Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 80.), a bus transfer involves the following steps:

1. The a start condition is generated by the Master by forcing the SDA low line while 
the SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of 
the Shift Register, or by setting the corresponding bit in the PORT Register to 
zero. Note that the Data Direction Register bit must be set to one for the output to 
be enabled. The slave device’s start detector logic (Figure 81.) detects the start 
condition and sets the USISIF Flag. The flag can generate an interrupt if 
necessary. 

2. In addition, the start detector will hold the SCL line low after the Master has 
forced an negative edge on this line (B). This allows the Slave to wake up from 
sleep or complete its other tasks before setting up the Shift Register to receive 
the address. This is done by clearing the start condition flag and reset the 
counter. 

3. The Master set the first bit to be transferred and releases the SCL line (C). The 
Slave samples the data and shift it into the Serial Register at the positive edge of 
the SCL clock.

4. After eight bits are transferred containing slave address and data direction (read 
or write), the Slave counter overflows and the SCL line is forced low (D). If the 
slave is not the one the Master has addressed, it releases the SCL line and waits 
for a new start condition.

5. If the Slave is addressed it holds the SDA line low during the acknowledgment 
cycle before holding the SCL line low again (i.e., the Counter Register must be 
set to 14 before releasing SCL at (D)). Depending of the R/W bit the Master or 
Slave enables its output. If the bit is set, a master read operation is in progress 
(i.e., the slave drives the SDA line) The slave can hold the SCL line low after the 
acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition 
is given by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has
last received. When the Master does a read operation it must terminate the operation by
force the acknowledge bit low after the last byte transmitted.

Figur e 81.  Start Condition Detector, Logic Diagram
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Start Condit ion Detector The start condition detector is shown in Figure 81. The SDA line is delayed (in the range
of 50 to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is
only enabled in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the
processor from the Power-down sleep mode. However, the protocol used might have
restrictions on the SCL hold time. Therefore, when using this feature in this case the
Oscillator start-up time set by the CKSEL Fuses (see “Clock Systems and their Distribu-
tion” on page 23) must also be taken into the consideration. Refer to the USISIF bit
description on page 186 for further details.

Clock speed con siderations. Maximum frequency for SCL and SCK is fCK /4. This is also the maximum data transmit
and receieve rate in both two- and three-wire mode. In two-wire slave mode the Two-
wire Clock Control Unit will hold the SCL low until the slave is ready to receive more
data. This may reduce the actual data rate in two-wire mode.

Alte rnative USI Usa ge When the USI unit is not used for serial communication, it can be set up to do alternative
tasks due to its flexible design.

Half-dup lex Asy nchronou s 
Data Transfer

By utilizing the Shift Register in Three-wire mode, it is possible to implement a more
compact and higher performance UART than by software only.

4-bit Coun ter The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note
that if the counter is clocked externally, both clock edges will generate an increment.

12-bit  Timer/Count er Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit
counter.

Edge Triggered External 
Interru pt

By setting the counter to maximum value (F) it can function as an additional external
interrupt. The Overflow Flag and Interrupt Enable bit are then used for the external inter-
rupt. This feature is selected by the USICS1 bit.

Soft ware Inte rrupt The counter overflow interrupt can be used as a software interrupt triggered by a clock
strobe.

USI Register 
Descr ipti ons

USI Data Register – USIDR

The USI uses no buffering of the Serial Register, i.e., when accessing the Data Register
(USIDR) the Serial Register is accessed directly. If a serial clock occurs at the same
cycle the register is written, the register will contain the value written and no shift is per-
formed. A (left) shift operation is performed depending of the USICS1..0 bits setting. The
shift operation can be controlled by an external clock edge, by a Timer/Counter0 Com-
pare Match, or directly by software using the USICLK strobe bit. Note that even when no
wire mode is selected (USIWM1..0 = 0) both the external data input (DI/SDA) and the
external clock input (USCK/SCL) can still be used by the Shift Register.

Bit 7 6 5 4 3 2 1 0

MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The output pin in use, DO or SDA depending on the wire mode, is connected via the out-
put latch to the most significant bit (bit 7) of the Data Register. The output latch is open
(transparent) during the first half of a serial clock cycle when an external clock source is
selected (USICS1 = 1), and constantly open when an internal clock source is used
(USICS1 = 0). The output will be changed immediately when a new MSB written as long
as the latch is open. The latch ensures that data input is sampled and data output is
changed on opposite clock edges.

Note that the corresponding Data Direction Register to the pin must be set to one for
enabling data output from the Shift Register.

USI Status Regist er – USISR

The Status Register contains Interrupt Flags, line Status Flags and the counter value.

• Bit  7 – USISIF: Start Condit ion Interrupt  Flag

When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition
is detected. When output disable mode or Three-wire mode is selected and (USICSx =
0b11 & USICLK = 0) or (USICS = 0b10 & USICLK = 0), any edge on the SCK pin sets
the flag.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the
Global Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one
to the USISIF bit. Clearing this bit will release the start detection hold of USCL in Two-
wire mode. 

A start condition interrupt will wakeup the processor from all sleep modes.

• Bit 6 – USIOIF: Counte r Overflow Interrupt  Flag

This flag is set (one) when the 4-bit counter overflows (i.e., at the transition from 15 to
0). An interrupt will be generated when the flag is set while the USIOIE bit in USICR and
the Global Interrupt Enable Flag are set. The flag will only be cleared if a one is written
to the USIOIF bit. Clearing this bit will release the counter overflow hold of SCL in Two-
wire mode.

A counter overflow interrupt will wakeup the processor from Idle sleep mode.

• Bit  5 – USIPF: Stop Condit ion Flag

When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is
detected. The flag is cleared by writing a one to this bit. Note that this is not an Interrupt
Flag. This signal is useful when implementing Two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Colli sion

This bit is logical one when bit 7 in the Shift Register differs from the physical pin value.
The flag is only valid when Two-wire mode is used. This signal is useful when imple-
menting Two-wire bus master arbitration.

• Bits 3..0 – USICNT3..0: Count er Value

These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be
read or written by the CPU.

Bit 7 6 5 4 3 2 1 0

USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The 4-bit counter increments by one for each clock generated either by the external
clock edge detector, by a Timer/Counter0 Compare Match, or by software using USI-
CLK or USITC strobe bits. The clock source depends of the setting of the USICS1..0
bits. For external clock operation a special feature is added that allows the clock to be
generated by writing to the USITC strobe bit. This feature is enabled by write a one to
the USICLK bit while setting an external clock source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

USI Contr ol Register – USICR 

The Control Register includes interrupt enable control, wire mode setting, Clock Select
setting, and clock strobe.

• Bit 7 – USISIE: Start Condit ion Int errupt  Enable

Setting this bit to one enables the Start Condition detector interrupt. If there is a pending
interrupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will
immediately be executed. Refer to the USISIF bit description on page 186 for further
details.

• Bit 6 – USIOIE: Count er Overf low Interrupt Ena ble

Setting this bit to one enables the Counter Overflow interrupt. If there is a pending inter-
rupt when the USIOIE and the Global Interrupt Enable Flag is set to one, this will
immediately be executed. Refer to the USIOIF bit description on page 186 for further
details.

• Bit 5..4 – USIWM1..0: Wire  Mode

These bits set the type of wire mode to be used. Basically only the function of the
outputs are affected by these bits. Data and clock inputs are not affected by the mode
selected and will always have the same function. The counter and Shift Register can
therefore be clocked externally, and data input sampled, even when outputs are
disabled. The relations between USIWM1..0 and the USI operation is summarized in
Table 83.

Bit 7 6 5 4 3 2 1 0

USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR

Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL)
respectively to avoid confusion between the modes of operation.

Table 83.  Relations between USIWM1..0 and the USI Operation

USIWM1 USIWM0 Descri ption

0 0 Outputs, clock hold, and start detector disabled. Port pins operates as 
normal.

0 1 Three-wire mode. Uses DO, DI, and USCK pins.

The Data Output (DO) pin overrides the corresponding bit in the PORT 
Register in this mode. However, the corresponding DDR bit still 
controls the data direction. When the port pin is set as input the pins 
pull-up is controlled by the PORT bit.

The Data Input (DI) and Serial Clock (USCK) pins do not affect the 
normal port operation. When operating as master, clock pulses are 
software generated by toggling the PORT Register, while the data 
direction is set to output. The USITC bit in the USICR Register can be 
used for this purpose.

1 0 Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-
directional and uses open-collector output drives. The output drivers 
are enabled by setting the corresponding bit for SDA and SCL in the 
DDR Register.

When the output driver is enabled for the SDA pin, the output driver will 
force the line SDA low if the output of the Shift Register or the 
corresponding bit in the PORT Register is zero. Otherwise the SDA 
line will not be driven (i.e., it is released). When the SCL pin output 
driver is enabled the SCL line will be forced low if the corresponding bit 
in the PORT Register is zero, or by the start detector. Otherwise the 
SCL line will not be driven.
The SCL line is held low when a start detector detects a start condition 
and the output is enabled. Clearing the Start Condition Flag (USISIF) 
releases the line. The SDA and SCL pin inputs is not affected by 
enabling this mode. Pull-ups on the SDA and SCL port pin are 
disabled in Two-wire mode.

1 1 Two-wire mode. Uses SDA and SCL pins.

Same operation as for the Two-wire mode described above, except 
that the SCL line is also held low when a counter overflow occurs, and 
is held low until the Counter Overflow Flag (USIOIF) is cleared.
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• Bit 3..2 – USICS1..0: Clock Sour ce Select

These bits set the clock source for the Shift Register and counter. The data output latch
ensures that the output is changed at the opposite edge of the sampling of the data
input (DI/SDA) when using external clock source (USCK/SCL). When software strobe or
Timer/Counter0 Compare Match clock option is selected, the output latch is transparent
and therefore the output is changed immediately. Clearing the USICS1..0 bits enables
software strobe option. When using this option, writing a one to the USICLK bit clocks
both the Shift Register and the counter. For external clock source (USICS1 = 1), the
USICLK bit is no longer used as a strobe, but selects between external clocking and
software clocking by the USITC strobe bit.

Table 84 shows the relationship between the USICS1..0 and USICLK setting and clock
source used for the Shift Register and the 4-bit counter.

• Bit  1 – USICLK: Clo ck Strobe

Writing a one to this bit location strobes the Shift Register to shift one step and the
counter to increment by one, provided that the USICS1..0 bits are set to zero and by
doing so the software clock strobe option is selected. The output will change immedi-
ately when the clock strobe is executed, i.e., in the same instruction cycle. The value
shifted into the Shift Register is sampled the previous instruction cycle. The bit will be
read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is
changed from a clock strobe to a Clock Select Register. Setting the USICLK bit in this
case will select the USITC strobe bit as clock source for the 4-bit counter (see Table 84).

• Bit 0 – USITC: Togg le Clock Port Pin

Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from
1 to 0. The toggling is independent of the setting in the Data Direction Register, but if the
PORT value is to be shown on the pin the DDRE4 must be set as output (to one). This
feature allows easy clock generation when implementing master devices. The bit will be
read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to
one, writing to the USITC strobe bit will directly clock the 4-bit counter. This allows an
early detection of when the transfer is done when operating as a master device.

Table 84.  Relations between the USICS1..0 and USICLK Setting

USICS1 USICS0 USICLK
Shift Re gister  Cloc k 
Sour ce

4-bit Counter Cloc k 
Sour ce

0 0 0 No Clock No Clock

0 0 1 Software clock strobe 
(USICLK)

Software clock strobe 
(USICLK)

0 1 X Timer/Counter0 Compare 
Match

Timer/Counter0 Compare 
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe 
(USITC)

1 1 1 External, negative edge Software clock strobe 
(USITC)
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Analog Comparator The Analog Comparator compares the input values on the positive pin AIN0 and nega-
tive pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on
the negative pin AIN1, the Analog Comparator output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block dia-
gram of the comparator and its surrounding logic is shown in Figure 82.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register - PRR” on page
34 must be disabled by writing a logical zero to be able to use the ADC input MUX.

Figur e 82.  Analog Comparator Block Diagram(2)

Notes: 1. See Table 86 on page 192.
2. Refer to Figure 1 on page 2 and Table 29 on page 63 for Analog Comparator pin

placement.

ADC Cont rol and  Status 
Register B – ADCSRB

• Bit  6 – ACME: Analog Compa rator Mul tip lexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 192. 

Analog  Compa rator Cont rol 
and Status Regist er – ACSR

• Bit  7 – ACD: Anal og Compar ator Di sable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Bit 7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACB G ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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consumption in Active and Idle mode. When changing the ACD bit, the Analog Compar-
ator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt
can occur when the bit is changed.

• Bit  6 – ACBG: Analog Compa rator Band gap Selec t

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the
Analog Comparator. When the bandgap reference is used as input to the Analog Com-
parator, it will take a certain time for the voltage to stabilize. If not stabilized, the first
conversion may give a wrong value. See “Internal Voltage Reference” on page 42.

• Bit  5 – ACO: Analog Co mparator  Output

The output of the Analog Comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit  4 – ACI: Anal og Compar ator Interrupt  Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a
logic one to the flag.

• Bit  3 – ACIE: Analog Compara tor Interrupt  Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Ana-
log Comparator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit  2 – ACIC: Analog Co mpara tor  Inpu t Capt ure Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the Input Capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the Input Capture
function exists. To make the comparator trigger the Timer/Counter1 Input Capture inter-
rupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Compara tor Interrupt  Mode Sel ect

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 85.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt
can occur when the bits are changed.

Table 85.  ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrup t Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.
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Analog Comparator 
Multiple xed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Ana-
log Comparator. The ADC multiplexer is used to select this input, and consequently, the
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Ana-
log Comparator, as shown in Table 86. If ACME is cleared or ADEN is set, AIN1 is
applied to the negative input to the Analog Comparator.

Digit al Input  Disab le Regist er 
1 – DIDR1

• Bit  1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digi tal Inpu t Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled.
The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital
input buffer. 

Table 86.  Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator  Negative  Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Analog to Digital 
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-line arity
• ± 2 LSB Absolute Accurac y
• 13 µs - 260 µs Con version Time (50 kHz to 1 MH z ADC clock)
• Up to 15 kSPS at Maxim um Resolution (200 kHz ADC clock)
• Eight Multi plexed Single Ended Input Chann els
• Optiona l Left Adjustme nt f or ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectab le 1.1V ADC Refere nce Voltage
• Free Runni ng or Single Conversion Mode
• ADC Star t Conversion by Auto Triggering on Inter rupt Sour ces
• Interr upt on ADC Co nversion C omple te
• Sleep Mode Noise Canceler

The ATmega169 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V
(GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 83.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more
than ± 0.3V from VCC. See the paragraph “ADC Noise Canceler” on page 200 on how to
connect this pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The volt-
age reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register - PRR” on page
34 must be written to zero to enable the ADC module.
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Figur e 83.  Analog to Digital Converter Block Schematic

Operation The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents
the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V refer-
ence voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the
ADC input pins, as well as GND and a fixed bandgap voltage reference, can be selected
as single ended inputs to the ADC. The ADC is enabled by setting the ADC Enable bit,
ADEN in ADCSRA. Voltage reference and input channel selections will not go into effect
until ADEN is set. The ADC does not consume power when ADEN is cleared, so it is
recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
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to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

Star ting a Con version A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal still is set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the Interrupt Flag must be cleared in order to trig-
ger a new conversion at the next interrupt event. 

Figur e 84.  ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
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The ADSC bit will be read as one during a conversion, independently of how the conver-
sion was started.

Prescaling and 
Conversion Timing

Figur e 85.  ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 200 kHz to get maximum resolution. If a lower resolution than 10
bits is needed, the input clock frequency to the ADC can be higher than 200 kHz to get a
higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock fre-
quency from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits
in ADCSRA. The prescaler starts counting from the moment the ADC is switched on by
setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN
bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the con-
version starts at the following rising edge of the ADC clock cycle. 

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize
the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain
time for the voltage to stabilize. If not stabilized, the first value read after the first conver-
sion may be wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
Single Conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the
sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.
When using Differential mode, along with Auto triggering from a source other than the
ADC Conversion Complete, each conversion will require 25 ADC clocks. This is
because the ADC must be disabled and re-enabled after every conversion.
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In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 87.

Figur e 86.  ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figur e 87.  ADC Timing Diagram, Single Conversion

Figur e 88.  ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler 

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS 
Update



198 ATmega169/V
2514P–AVR–07/06

Figur e 89.  ADC Timing Diagram, Free Running Conversion

Table 87.  ADC Conversion Time

Condition
Sample & Hold  (Cycles 
from Star t of Con version)

Conversion Time 
(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

11 12 13
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Changing Channel or 
Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If
the ADMUX Register is changed in this period, the user cannot tell if the next conversion
is based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is 
cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

ADC Input  Channels When changing channel selections, the user should observe the following guidelines to
ensure that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the conversion to complete before changing
the channel selection.

In Free Running mode, always select the channel before starting the first conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the first conversion to complete, and then
change the channel selection. Since the next conversion has already started automati-
cally, the next result will reflect the previous channel selection. Subsequent conversions
will reflect the new channel selection.

ADC Voltage Reference The reference voltage for the ADC (VREF) indicates the conversion range for the ADC.
Single ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be
selected as either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is
generated from the internal bandgap reference (VBG) through an internal buffer. In either
case, the external AREF pin is directly connected to the ADC, and the reference voltage
can be made more immune to noise by connecting a capacitor between the AREF pin
and ground. VREF can also be measured at the AREF pin with a high impedant voltme-
ter. Note that VREF is a high impedant source, and only a capacitive load should be
connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
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external voltage. If no external voltage is applied to the AREF pin, the user may switch
between AVCC and 1.1V as reference selection. The first ADC conversion result after
switching reference voltage source may be inaccurate, and the user is advised to dis-
card this result.

ADC Noise Canceler The ADC features a noise canceler that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceler
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Con-
version mode must be selected and the ADC conversion complete interrupt 
must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a con-
version once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC 
interrupt will wake up the CPU and execute the ADC Conversion Complete 
interrupt routine. If another interrupt wakes up the CPU before the ADC con-
version is complete, that interrupt will be executed, and an ADC Conversion 
Complete interrupt request will be generated when the ADC conversion 
completes. The CPU will remain in active mode until a new sleep command 
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption. 

Analog  Inpu t Circuit ry The analog input circuitry for single ended channels is illustrated in Figure 90. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 k. or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

Figur e 90.  Analog Input Circuitry
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Analog Noise Canceling 
Technique s

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run 
over the analog ground plane, and keep them well away from high-speed 
switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply 
voltage via an LC network as shown in Figure 91.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do 
not switch while a conversion is in progress.

Figur e 91.  ADC Power Connections
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ADC Accurac y Definitions An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n

steps (LSBs). The lowest code is read as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal 
transition (at 0.5 LSB). Ideal value: 0 LSB.

Figur e 92.  Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the 
last transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below 
maximum). Ideal value: 0 LSB

Figur e 93.  Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the 
maximum deviation of an actual transition compared to an ideal transition for any 
code. Ideal value: 0 LSB.
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Figur e 94.  Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width 
(the interval between two adjacent transitions) from the ideal code width (1 LSB). 
Ideal value: 0 LSB.

Figur e 95.  Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number 
of codes, a range of input voltages (1 LSB wide) will code to the same value. Always 
± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition 
compared to an ideal transition for any code. This is the compound effect of offset, 
gain error, differential error, non-linearity, and quantization error. Ideal value: ± 0.5 
LSB.
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ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH). 

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage refer-
ence (see Table 89 on page 205 and Table 90 on page 206). 0x000 represents analog
ground, and 0x3FF represents the selected reference voltage minus one LSB.

Figur e 96.  Differential Measurement Range
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ADMUX = 0xFB (ADC3 - ADC2, 1.1V reference, left adjusted result) 

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 

ADCR = 512 * (300 - 500) / 1100 = -93 = 0x3A3.

ADCL will thus read 0xC0, and ADCH will read 0xD8. Writing zero to ADLAR right
adjusts the result: ADCL = 0xA3, ADCH = 0x03.

ADC Mul tip lexer Selection 
Register – ADMUX

• Bit  7:6 – REFS1:0: Referenc e Selection Bit s

These bits select the voltage reference for the ADC, as shown in Table 89. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

•  Bit 5 – AD LAR: ADC  Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register – ADCL and ADCH” on page 208.

Table 88.  Correlation Between Input Voltage and Output Codes

VADCn Read Code Corresponding Dec imal Value

 VADCm + VREF 0x1FF 511

VADCm + 511/512 VREF 0x1FF 511

VADCm + 510/512 VREF 0x1FE 510

... ... ...

VADCm + 1/512 VREF 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF 0x3FF -1

... ... ...

VADCm - 511/512 VREF 0x201 -511

VADCm - VREF 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 89.  Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin
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• Bits 4:0 – MUX4:0: Analog Channel Selection Bi ts

The value of these bits selects which combination of analog inputs are connected to the
ADC. See Table 90 for details. If these bits are changed during a conversion, the
change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

Table 90.  Input Channel Selections

MUX4..0 Sing le Ended Input Positi ve Differentia l Input Negativ e Diff erential Input

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

01001

01010

01011

01100

01101

01110

01111

10000 ADC0 ADC1

10001 ADC1 ADC1

10010 N/A ADC2 ADC1

10011 ADC3 ADC1

10100 ADC4 ADC1

10101 ADC5 ADC1

10110 ADC6 ADC1

10111 ADC7 ADC1

11000 ADC0 ADC2

11001 ADC1 ADC2

11010 ADC2 ADC2

11011 ADC3 ADC2

11100 ADC4 ADC2

11101 ADC5 ADC2

11110 1.1V (VBG) N/A

11111 0V (GND)
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ADC Cont rol and  Status 
Register A – ADCSRA

• Bit  7 – ADEN: ADC Enab le

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

• Bit  6 – ADSC: ADC Sta rt Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start
a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – A DIF: ADC Interrupt Fla g

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt  Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 2:0 – ADPS2:0: ADC Pres caler Select Bi ts

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

The ADC Data Register – 
ADCL and A DCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.When
ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently,
if the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted. 

• ADC9:0: ADC Conversion Res ult

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 204.

Table 91.  ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division F actor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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ADC Cont rol and  Status 
Register B – ADCSRB

• Bit  7 – Res:  Reserve d Bi t

This bit is reserved for future use. To ensure compatibility with future devices, this bit
must be written to zero when ADCSRB is written.

• Bit  2:0 – ADTS2:0: ADC Auto Trigger Sour ce

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set.

Digit al Input  Disab le Regist er 
0 – DIDR0

• Bit  7..0 – ADC7D..ADC0D: ADC7..0 Digita l Input  Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC7..0 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer. 

Bit 7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 92.  ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Sour ce

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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LCD Contr oller The LCD Controller/driver is intended for monochrome passive liquid crystal display
(LCD) with up to four common terminals and up to 25 segment terminals.

Features • Displ ay Capacity  of 25 Segments an d Four Comm on Termi nals
• Suppor t Sta tic, 1/2, 1/3 and 1/4 Duty
• Suppor t Sta tic, 1/2, 1/3 Bias
• On-chi p LCD Power  Supply, on ly One Externa l Capaci tor  needed
• Displa y Possib le in Power-save Mode for Low Power Con sumpti on
• Software Selecta ble Low Power Waveform Capability
• Flexible Selecti on of Frame Frequen cy
• Software Selection between S ystem Cloc k or an Ex ternal  Asynchrono us Clock Source
• Equal Source and  Sink Capabi li ty to maximize L CD Lif e Time
• LCD Interrupt Can be Used for Displa y Data Update or Wake-up from Sleep Mode
• Segment an d Commo n Pin s not Needed for Driv ing the  Disp lay Can be Used as Or dina ry 

I/O Pins
• Latch ing of Disp lay Data gi ves Fu ll  Freedom in  Register Update

Overview A simplified block diagram of the LCD Controller/Driver is shown in Figure 97. For the
actual placement of I/O pins, see “Pinout ATmega169” on page 2.

An LCD consists of several segments (pixels or complete symbols) which can be visible
or non visible. A segment has two electrodes with liquid crystal between them. When a
voltage above a threshold voltage is applied across the liquid crystal, the segment
becomes visible.

The voltage must alternate to avoid an electrophoresis effect in the liquid crystal, which
degrades the display. Hence the waveform across a segment must not have a DC-
component.

The PRLCD bit in “Power Reduction Register - PRR” on page 34 must be written to zero
to enable the LCD module.

Defini tio ns Several terms are used when describing LCD. The definitions in Table 93 are used
throughout this document. 

Table 93.  Definitions

LCD A passive display panel with terminals leading directly to a segment

Segment The least viewing element (pixel) which can be on or off

Common Denotes how many segments are connected to a segment terminal

Duty 1/(Number of common terminals on a actual LCD display) 

Bias 1/(Number of voltage levels used driving a LCD display -1)

Frame Rate Number of times the LCD segments is energized per second.
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Figur e 97.  LCD Module Block Diagram 

LCD Cloc k Sour ces The LCD Controller can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source clkLCD is by default equal to the system clock, clkI/O.
When the LCDCS bit in the LCDCRB Register is written to logic one, the clock source is
taken from the TOSC1 pin. 

The clock source must be stable to obtain accurate LCD timing and hence minimize DC
voltage offset across LCD segments.

LCD Prescaler The prescaler consist of a 12-bit ripple counter and a 1- to 8-clock divider. The
LCDPS2:0 bits selects clkLCD divided by 16, 64, 128, 256, 512, 1024, 2048, or 4096. 

If a finer resolution rate is required, the LCDCD2:0 bits can be used to divide the clock
further by 1 to 8.

Output from the clock divider clkLCD_PS is used as clock source for the LCD timing.

LCD Memor y The display memory is available through I/O Registers grouped for each common termi-
nal. When a bit in the display memory is written to one, the corresponding segment is
energized (on), and non-energized when a bit in the display memory is written to zero. 

To energize a segment, an absolute voltage above a certain threshold must be applied.
This is done by letting the output voltage on corresponding COM pin and SEG pin have
opposite phase. For display with more than one common, one (1/2 bias) or two (1/3
bias) additional voltage levels must be applied. Otherwise, non-energized segments on
COM0 would be energized for all non-selected common. 
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Addressing COM0 starts a frame by driving opposite phase with large amplitude out on
COM0 compared to none addressed COM lines. Non-energized segments are in phase
with the addressed COM0, and energized segments have opposite phase and large
amplitude. For waveform figures refer to “Mode of Operation” on page 212. Latched
data from LCDDR4 - LCDDR0 is multiplexed into the decoder. The decoder is controlled
from the LCD timing and sets up signals controlling the analog switches to produce an
output waveform. Next, COM1 is addressed, and latched data from LCDDR9 - LCDDR5
is input to decoder. Addressing continuous until all COM lines are addressed according
to number of common (duty). The display data are latched before a new frame start.

LCD Contrast 
Cont roller/Power Supp ly

The peak value (VLCD) on the output waveform determines the LCD Contrast. VLCD is
controlled by software from 2.6V to 3.35V independent of VCC. An internal signal inhibits
output to the LCD until VLCD has reached its target value.

LCDCAP An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as
shown in Figure 98. This capacitor acts as a reservoir for LCD power (VLCD). A large
capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target
value.

Figur e 98.  LCDCAP Connection

LCD Buff er Driver Intermediate voltage levels are generated from buffers/drivers. The buffers are active
the amount of time specified by LCDDC[2:0] in “LCD Contrast Control Register – LCD-
CCR” on page 223. Then LCD output pins are tri-stated and buffers are switched off.
Shortening the drive time will reduce power consumption, but displays with high internal
resistance or capacitance may need longer drive time to achieve sufficient contrast.

Mode of Operation

Static Duty and Bias If all segments on a LCD have one electrode common, then each segment must have a
unique terminal.

This kind of display is driven with the waveform shown in Figure 99. SEG0 - COM0 is
the voltage across a segment that is on, and SEG1 - COM0 is the voltage across a seg-
ment that is off.
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Figur e 99.  Driving a LCD with One Common Terminal

1/2 Duty  and 1/2 Bias For LCD with two common terminals (1/2 duty) a more complex waveform must be used
to individually control segments. Although 1/3 bias can be selected 1/2 bias is most
common for these displays. Waveform is shown in Figure 100. SEG0 - COM0 is the volt-
age across a segment that is on, and SEG0 - COM1 is the voltage across a segment
that is off.

Figur e 100.  Driving a LCD with Two Common Terminals
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1/3 Duty  and 1/3 Bias 1/3 bias is usually recommended for LCD with three common terminals (1/3 duty).
Waveform is shown in Figure 101. SEG0 - COM0 is the voltage across a segment that is
on and SEG0-COM1 is the voltage across a segment that is off.

Figur e 101.  Driving a LCD with Three Common Terminals

1/4 Duty  and 1/3 Bias 1/3 bias is optimal for LCD displays with four common terminals (1/4 duty). Waveform is
shown in Figure 102. SEG0 - COM0 is the voltage across a segment that is on and
SEG0 - COM1 is the voltage across a segment that is off.

Figur e 102.  Driving a LCD with Four Common Terminals
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Low Power Waveform To reduce toggle activity and hence power consumption a low power waveform can be
selected by writing LCDAB to one. Low power waveform requires two subsequent
frames with the same display data to obtain zero DC voltage. Consequently data latch-
ing and Interrupt Flag is only set every second frame. Default and low power waveform
is shown in Figure 103 for 1/3 duty and 1/3 bias. For other selections of duty and bias,
the effect is similar.

Figur e 103.  Default and Low Power Waveform

Operation in Sle ep Mod e When synchronous LCD clock is selected (LCDCS = 0) the LCD display will operate in
Idle mode and Power-save mode with any clock source.

An asynchronous clock from TOSC1 can be selected as LCD clock by writing the
LCDCS bit to one when Calibrated Internal RC Oscillator is selected as system clock
source. The LCD will then operate in Idle mode, ADC Noise Reduction mode and
Power-save mode. 

When EXCLK in ASSR Register is written to one, and asynchronous clock is selected,
the external clock input buffer is enabled and an external clock can be input on Timer
Oscillator 1 (TOSC1) pin instead of a 32 kHz crystal. See “Asynchronous operation of
the Timer/Counter” on page 138 for further details.

Before entering Power-down mode, Standby mode or ADC Noise Reduction mode with
synchronous LCD clock selected, the user have to disable the LCD. Refer to “Disabling
the LCD” on page 218.  

Displ ay Bl anking When LCDBL is written to one, the LCD is blanked after completing the current frame.
All segments and common pins are connected to GND, discharging the LCD. Display
memory is preserved. Display blanking should be used before disabling the LCD to
avoid DC voltage across segments, and a slowly fading image.   

Port Mask For LCD with less than 25 segment terminals, it is possible to mask some of the unused
pins and use them as ordinary port pins instead. Refer to Table 95 for details. Unused
common pins are automatically configured as port pins.
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LCD Usage The following section describes how to use the LCD.

LCD Initi alization Prior to enabling the LCD some initialization must be preformed. The initialization pro-
cess normally consists of setting the frame rate, duty, bias and port mask. LCD contrast
is set initially, but can also be adjusted during operation. 

Consider the following LCD as an example:

Figur e 104.  LCD usage example.

Display: TN Positive, Reflective 

Number of common terminals: 3

Number of segment terminals:  21
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Note: 1. See “About Code Examples” on page 6.

Before a re-initialization is done, the LCD controller/driver should be disabled

Updating t he LCD Display memory (LCDDR0, LCDDR1, ..), LCD Blanking (LCDBL), Low power waveform
(LCDAB) and contrast control (LCDCCR) are latched prior to every new frame. There
are no restrictions on writing these LCD Register locations, but an LCD data update may
be split between two frames if data are latched while an update is in progress. To avoid
this, an interrupt routine can be used to update Display memory, LCD Blanking, Low
power waveform, and contrast control, just after data are latched.

Assembly Code Example(1)

LCD_Init:

; Use 32 kHz crystal oscillator

; 1/3 Bias and 1/3 duty, SEG21:SEG24 is used as port pins 

ldi r16, (1<<LCDCS) | (1<<LCDMUX1)| (1<<LCDPM2)

 sts LCDCRB, r16

; Using 16 as prescaler selection and 7 as LCD Clock Divide  

; gives a frame rate of 49 Hz

ldi r16, (1<<LCDCD2) | (1<<LCDCD1)

sts LCDFRR, r16

; Set segment drive time to 125 µs and output voltage to 3.3 V

ldi r16, (1<<LCDDC1) | (1<<LCDCC3) | (1<<LCDCC2) | (1<<LCDCC1)

sts LCDCCR, r16

; Enable LCD, default waveform and no interrupt enabled

ldi r16, (1<<LCDEN)

sts LCDCRA, r16

ret

C Code Example(1)

Void LCD_Init(void);

{

/* Use 32 kHz crystal oscillator */

/* 1/3 Bias and 1/3 duty, SEG21:SEG24 is used as port pins */

LCDCRB = (1<<LCDCS) | (1<<LCDMUX1)| (1<<LCDPM2);

/* Using 16 as prescaler selection and 7 as LCD Clock Divide */ 

/* gives a frame rate of 49 Hz */

LCDFRR = (1<<LCDCD2) | (1<<LCDCD1);

/* Set segment drive time to 125 µs and output voltage to 3.3 V*/

LCDCCR = (1<<LCDDC1) | (1<<LCDCC3) | (1<<LCDCC2) | (1<<LCDCC1);

/* Enable LCD, default waveform and no interrupt enabled */

LCDCRA = (1<<LCDEN);

}
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In the example below we assume SEG10 and COM1 and SEG4 in COM0 are the only
segments changed from frame to frame. Data are stored in r20 and r21 for simplicity

Note: 1. See “About Code Examples” on page 6.

Disabling the  LCD In some application it may be necessary to disable the LCD. This is the case if the MCU
enters Power-down mode where no clock source is present.

The LCD should be completely discharged before being disabled. No DC voltage should
be left across any segment. The best way to achieve this is to use the LCD Blanking fea-
ture that drives all segment pins and common pins to GND. 

When the LCD is disabled, port function is activated again. Therefore, the user must
check that port pins connected to a LCD terminal are either tri-state or output low (sink).

Assembly Code Example(1)

LCD_update:

; LCD Blanking and Low power waveform are unchanged.

; Update Display memory.

sts LCDDR0, r20

sts LCDDR6, r21

ret

C Code Example(1)

Void LCD_update(unsigned char data1, data2);

{

/* LCD Blanking and Low power waveform are unchanged. */

/* Update Display memory. */

LCDDR0 = data1;

LCDDR6 = data2;

}



219

ATmega169/V

2514P–AVR–07/06

Note: 1. See “About Code Examples” on page 6.

LCD Con trol and Status 
Register A – LCDCRA

• Bit  7 – LCDEN: LCD Enab le

Writing this bit to one enables the LCD Controller/Driver. By writing it to zero, the LCD is
turned off immediately. Turning the LCD Controller/Driver off while driving a display,

Assembly Code Example(1)

LCD_disable:

; Wait until a new frame is started.

Wait_1:

lds r16, LCDCRA

sbrs r16, LCDIF

rjmp Wait_1

; Set LCD Blanking and clear interrupt flag 

; by writing a logical one to the flag.

ldi r16, (1<<LCDEN)|(1<<LCDIF)|(1<<LCDBL)

sts LCDCRA, r16

; Wait until LCD Blanking is effective.

Wait_2:

lds r16, LCDCRA

sbrs r16, LCDIF

rjmp Wait_2

; Disable LCD.

ldi r16, (0<<LCDEN)

sts LCDCRA, r16

ret

C Code Example(1)

Void LCD_disable(void);

{

/* Wait until a new frame is started. */

while ( !(LCDCRA & (1<<LCDIF)) )

;

/* Set LCD Blanking and clear interrupt flag */

/* by writing a logical one to the flag. */

LCDCRA = (1<<LCDEN)|(1<<LCDIF)|(1<<LCDBL);

/* Wait until LCD Blanking is effective. */

while ( !(LCDCRA & (1<<LCDIF)) )

;

/* Disable LCD */

LCDCRA = (0<<LCDEN);

}

Bit 7 6 5 4 3 2 1 0

LCDEN LCDAB – LCDIF LCDIE – – LCDBL LCDCRA

Read/Write R/W R/W R R/W R/W R R R/W

Initial Value 0 0 0 0 0 0 0 0
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enables ordinary port function, and DC voltage can be applied to the display if ports are
configured as output. It is recommended to drive output to ground if the LCD Control-
ler/Driver is disabled to discharge the display.

• Bit  6 – LCDAB: LCD Lo w Power Waveform

When LCDAB is written logic zero, the default waveform is output on the LCD pins.
When LCDAB is written logic one, the Low Power Waveform is output on the LCD pins.
If this bit is modified during display operation the change takes place at the beginning of
a new frame.

• Bit  5 – Res:  Reserve d Bi t

This bit is reserved bit in the ATmega169 and will always read as zero.

• Bit  4 – LCDIF:  LCD Inte rrup t Flag

This bit is set by hardware at the beginning of a new frame, at the same time as the dis-
play data is updated. The LCD Start of Frame Interrupt is executed if the LCDIE bit and
the I-bit in SREG are set. LCDIF is cleared by hardware when executing the corre-
sponding Interrupt Handling Vector. Alternatively, writing a logical one to the flag clears
LCDIF. Beware that if doing a Read-Modify-Write on LCDCRA, a pending interrupt can
be disabled. If Low Power Waveform is selected the Interrupt Flag is set every second
frame.

• Bit  3 – LCDIE:  LCD Interrupt  Enable

When this bit is written to one and the I-bit in SREG is set, the LCD Start of Frame Inter-
rupt is enabled.

• Bits 2:1 – Res: Reserved Bit s

These bits are reserved bits in the ATmega169 and will always read as zero.

• Bit  0 – LCDBL:  LCD Bla nking

When this bit is written to one, the display will be blanked after completion of a frame. All
segment and common pins will be driven to ground.

LCD Con trol and Status 
Register B – LCDCRB

• Bit  7 – LCDCS: LCD Clock Select

When this bit is written to zero, the system clock is used. When this bit is written to one,
the external asynchronous clock source is used. The asynchronous clock source is
either Timer/Counter Oscillator or external clock, depending on EXCLK in ASSR. See
“Asynchronous operation of the Timer/Counter” on page 138 for further details.

• Bit  6 – LCD2B: LCD 1 /2 Bias Select

When this bit is written to zero, 1/3 bias is used. When this bit is written to one, ½ bias is
used. Refer to the LCD Manufacture for recommended bias selection.

• Bit  5:4 – LCDMUX1:0: LCD Mux Select

The LCDMUX1:0 bits determine the duty cycle. Common pins that are not used are ordi-
nary port pins. The different duty selections are shown in Table 94.

Bit 7 6 5 4 3 2 1 0

LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 LCDCRB

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Val-
ue

0 0 0 0 0 0 0 0
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Note: 1. 1/2 bias when LCD2B is written to one and 1/3 otherwise.

• Bit3 – Res: Reserved Bit

This bit is reserved bit in the ATmega169 and will always read as zero.

• Bits 2:0 – LCDPM2:0: LCD Port Mask

The LCDPM2:0 bits determine the number of port pins to be used as segment drivers.
The different selections are shown in Table 95. Unused pins can be used as ordinary
port pins.

LCD Frame Rate Register – 
LCDFRR

• Bit  7 – Res:  Reserve d Bi t

This bit is reserved bit in the ATmega169 and will always read as zero.

• Bits 6:4 – LCDPS2:0: LCD Presca ler Select

The LCDPS2:0 bits selects tap point from a prescaler. The prescaled output can be fur-
ther divided by setting the clock divide bits (LCDCD2:0). The different selections are
shown in Table 96. Together they determine the prescaled LCD clock (clkLCD_PS), which
is clocking the LCD module.

Table 94.  LCD Duty Select

LCDMUX1 LCDMUX0 Duty Bias COM Pin I/O Port Pin

0 0 Static Static COM0 COM1:3

0 1 1/2 1/2 or 1/3(1) COM0:1 COM2:3

1 0 1/3 1/2 or 1/3(1) COM0:2 COM3

1 1 1/4 1/2 or 1/3(1) COM0:3 None

Table 95.  LCD Port Mask

LCDPM2 LCDPM1 LCDPM0
I/O Port in  Use as 
Segment Driver

Maxim um Num ber of 
Segments

0 0 0 SEG0:12 13

0 0 1 SEG0:14 15

0 1 0 SEG0:16 17

0 1 1 SEG0:18 19

1 0 0 SEG0:20 21

1 0 1 SEG0:22 23

1 1 0 SEG0:23 24

1 1 1 SEG0:24 25

Bit 7 6 5 4 3 2 1 0

– LCDPS2 LCDPS1 LCDPS0 – LCDCD2 LCDCD1 LCDCD0 LCDFRR

Read/Write R R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit  3 – Res:  Reserve d Bi t

This bit is reserved bit in the ATmega169 and will always read as zero.

• Bits 2:0 – LCDCD2:0:  LCD Clo ck Divide 2, 1, and 0

The LCDCD2:0 bits determine division ratio in the clock divider. The various selections
are shown in Table 97. This Clock Divider gives extra flexibility in frame rate selection.

The frame frequency can be calculated by the following equation:

Where:

N = prescaler divider (16, 64, 128, 256, 512, 1024, 2048, or 4096).

K = 8 for duty = 1/4, 1/2, and static.

K = 6 for duty = 1/3.

D = Division factor (see Table 97).

Table 96.  LCD Prescaler Select

LCDPS2 LCDPS1 LCDPS0

Output fr om 
Presca ler 
clkLCD/N

Applied Pres caled LCD Cloc k 
Freque ncy when LCDCD2:0 = 0, 

Duty = 1/4, and Frame  Rate = 64 Hz

0 0 0 clkLCD/16 8.1 kHz

0 0 1 clkLCD/64 33 kHz

0 1 0 clkLCD/128 66 kHz

0 1 1 clkLCD/256 130 kHz

1 0 0 clkLCD/512 260 kHz

1 0 1 clkLCD/1024 520 kHz

1 1 0 clkLCD/2048 1 MHz

1 1 1 clkLCD/4096 2 MHz

Table 97.  LCD Clock Divide

LCDCD2 LCDCD1 LCDCD0

Output fr om 
Presca ler divided b y 

(D):

clkLCD = 32.768 kHz, N = 16, 
and Duty  = 1/4, giv es a fram e 

rate of:

0 0 0 1 256 Hz

0 0 1 2 128 Hz

0 1 0 3 85.3 Hz

0 1 1 4 64 Hz

1 0 0 5 51.2 Hz

1 0 1 6 42.7 Hz

1 1 0 7 36.6 Hz

1 1 1 8 32 Hz

fframe

fclkLCD

K N D& &$ %
--------------------------=
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This is a very flexible scheme, and users are encouraged to calculate their own table to
investigate the possible frame rates from the formula above. Note when using 1/3 duty
the frame rate is increased with 33% when Frame Rate Register is constant. Example of
frame rate calculation is shown in Table 98.

LCD Contrast Contr ol 
Register – LC DCCR

• Bits 7:5 – LCDDC2:0:  LDC Dis play Configur ation

The LCDDC2:0 bits determine the amount of time the LCD drivers are turned on for
each voltage transition on segment and common pins. A short drive time will lead to
lower power consumption, but displays with high internal resistance may need longer
drive time to achieve satisfactory contrast. Note that the drive time will never be longer
than one half prescaled LCD clock period, even if the selected drive time is longer.
When using static bias or blanking, drive time will always be one half prescaled LCD
clock period.
Note: These bits are not available in ATmega169 revisions A to D

• Bit  4 – Res:  Reserve d Bi t

This bit is reserved in the ATmega169 and will always read as zero.

• Bits 3:0 – LCDCC3:0:  LCD Cont rast Cont rol 

Table 98.  Example of frame rate calculation

clkLCD duty K N LCDCD2:0 D Frame Rate

4 MHz 1/4 8 2048 011 4 4000000/(8*2048*4) = 61 Hz

4 MHz 1/3 6 2048 011 4 4000000/(6*2048*4) = 81 Hz

32.768 kHz Static 8 16 000 1 32768/(8*16*1) = 256 Hz

32.768 kHz 1/2 8 16 100 5 32768/(8*16*5) = 51 Hz

Bit 7 6 5 4 3 2 1 0

LCDDC2 LCDDC1 LCDDC0 – LCDCC3 LCDCC2 LCDCC1 LCDCC0 LCDCCR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 99.  LCD Display Configuration

LCDDC2 LCDDC1 LCDDC0 Nominal dr ive  time

0 0 0 300 µs

0 0 1 70 µs

0 1 0 150 µs

0 1 1 450 µs

1 0 0 575 µs

1 0 1 850 µs

1 1 0 1150 µs

1 1 1 50% of clkLCD_PS
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The LCDCC3:0 bits determine the maximum voltage VLCD on segment and common
pins. The different selections are shown in Table 100. New values take effect every
beginning of a new frame.

Table 100.  LCD Contrast Control

LCDCC3 LCDCC2 LCDCC1 LCDCC0 Maximum Voltage VLCD

0 0 0 0 2.60 V

0 0 0 1 2.65 V

0 0 1 0 2.70 V

0 0 1 1 2.75 V

0 1 0 0 2.80 V

0 1 0 1 2.85 V

0 1 1 0 2.90 V

0 1 1 1 2.95 V

1 0 0 0 3.00 V

1 0 0 1 3.05 V

1 0 1 0 3.10 V

1 0 1 1 3.15 V

1 1 0 0 3.20 V

1 1 0 1 3.25 V

1 1 1 0 3.30 V

1 1 1 1 3.35 V
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LCD Memor y Mapping Write a LCD memory bit to one and the corresponding segment will be energized (visi-
ble). Unused LCD Memory bits for the actual display can be used freely as storage.

Bit 7 6 5 4 3 2 1 0

– – – – – – – – LCDDR19

COM3 – – – – – – – SEG324 LCDDR18

COM3 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 LCDDR17

COM3 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 LCDDR16

COM3 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 LCDDR15

– – – – – – – – LCDDR14

COM2 – – – – – – – SEG224 LCDDR13

COM2 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 LCDDR12

COM2 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 LCDDR11

COM2 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 LCDDR10

– – – – – – – – LCDDR9

COM1 – – – – – – – SEG124 LCDDR8

COM1 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 LCDDR7

COM1 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 LCDDR6

COM1 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 LCDDR5

– – – – – – – – LCDDR4

COM0 – – – – – – – SEG024 LCDDR3

COM0 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 LCDDR2

COM0 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG009 SEG008 LCDDR1

COM0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 LCDDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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JTAG Interface and 
On-chip Deb ug 
System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundar y-scan Capabilities Accor ding to the IEEE std.  1149.1 (JTAG) Standa rd
• Debugg er Acce ss to:

– All  Internal P eripheral Units
– Internal and External RAM
– The Intern al Register File
– Program Coun ter
– EEPROM and Flash M emories

• Extensive O n-chip Debug Supp or t for Break Co nditio ns, Including
– AVR Break Instruction
– Break on Change of Pr ogra m Memor y Flow
– Single Step Break
– Program Memory Break Points  on Single Ad dres s or Ad dres s Rang e
– Data Memor y Break Points on Single Ad dress or Ad dress Range

• Programming of Flash, EEPROM, Fuses, and Loc k Bits thr ough the JTAG Interface
• On-chip Debugg ing Suppor ted by AVR Studio®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for 

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-scan Chain can be found in the
sections “Programming via the JTAG Interface” on page 285 and “IEEE 1149.1 (JTAG)
Boundary-scan” on page 232, respectively. The On-chip Debug support is considered
being private JTAG instructions, and distributed within ATMEL and to selected third
party vendors only.

Figure 105 shows a block diagram of the JTAG interface and the On-chip Debug sys-
tem. The TAP Controller is a state machine controlled by the TCK and TMS signals. The
TAP Controller selects either the JTAG Instruction Register or one of several Data Reg-
isters as the scan chain (Shift Register) between the TDI – input and TDO – output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers
used for board-level testing. The JTAG Programming Interface (actually consisting of
several physical and virtual Data Registers) is used for serial programming via the JTAG
interface. The Internal Scan Chain and Break Point Scan Chain are used for On-chip
debugging only.

Test Access P ort – TAP The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller 
state machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data 
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.
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The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT –
which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins
and the TAP controller is in reset. When programmed and the JTD bit in MCUCSR is
cleared, the TAP pins are internally pulled high and the JTAG is enabled for Boundary-
scan and programming. The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open collec-
tors on the reset line are used in the application.

Figur e 105.  Block Diagram
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Figur e 106.  TAP Controller State Diagram

TAP Cont roller The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 106 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-
face is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter 
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of 
the JTAG instructions into the JTAG Instruction Register from the TDI input at the 
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in 
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when 
this state is left by setting TMS high. While the instruction is shifted in from the TDI 
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction 
selects a particular Data Register as path between TDI and TDO and controls the 
circuitry surrounding the selected Data Register.
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state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the 
state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the 
Shift Data Register – Shift-DR state. While in this state, upload the selected Data 
Register (selected by the present JTAG instruction in the JTAG Instruction Register) 
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state, 
the TMS input must be held low during input of all bits except the MSB. The MSB of 
the data is shifted in when this state is left by setting TMS high. While the Data 
Register is shifted in from the TDI pin, the parallel inputs to the Data Register 
captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected 
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating 
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can

always be entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 231.

Using the Boundar y-
scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 232.

Using the On-c hip Deb ug 
System

As shown in Figure 105, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal 
peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask 
(“range Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask 
(“range Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.
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A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 230. 

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip debug system to work. As a security feature, the On-chip debug system is disabled
when either of the LB1 or LB2 Lock bits are set. Otherwise, the On-chip debug system
would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio® supports source level execution of Assembly
programs assembled with Atmel Corporation’s AVR Assembler and C programs com-
piled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows
XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code Break Points (using the BREAK instruction) and up to two data memory Break
Points, alternatively combined as a mask (range) Break Point.

On-chip Deb ug Specific 
JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distrib-
uted within ATMEL and to selected third party vendors only. Instruction opcodes are
listed for reference.

PRIVATE0; 0x8 Private JTAG instruction for accessing On-chip debug system.

PRIVATE1; 0x9 Private JTAG instruction for accessing On-chip debug system.

PRIVATE2; 0xA Private JTAG instruction for accessing On-chip debug system.

PRIVATE3; 0xB Private JTAG instruction for accessing On-chip debug system.
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On-chip Deb ug Related 
Register in I/O Memor y

On-chip Debug Regist er – 
OCDR

The OCDR Register provides a communication channel from the running program in the
microcontroller to the debugger. The CPU can transfer a byte to the debugger by writing
to this location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is
set to indicate to the debugger that the register has been written. When the CPU reads
the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the
IDRD bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case,
the OCDR Register can only be accessed if the OCDEN Fuse is programmed, and the
debugger enables access to the OCDR Register. In all other cases, the standard I/O
location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Using the JT AG 
Programming 
Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS,
TDI, and TDO. These are the only pins that need to be controlled/observed to perform
JTAG programming (in addition to power pins). It is not required to apply 12V externally.
The JTAGEN Fuse must be programmed and the JTD bit in the MCUCR Register must
be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a
chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section “Programming via the JTAG Interface” on
page 285.

Bib liograph y For more information about general Boundary-scan, the following literature can be
consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan 
Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992.

Bit 7 6 5 4 3 2 1 0

MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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IEEE 1149.1 (JTAG) 
Boundar y-scan

Features • JTAG (IEEE std. 1149.1 compliant) Interface
• Boundar y-scan Capabilities Acco rding to the JTAG Standar d
• Full  Scan of all Port Functi ons as well as Analog  Circui try having Off -chip Connecti ons
• Suppor ts the Optio nal IDCODE Instructio n
• Addi tional Public AVR_RESET Instruction to Re set the AVR

System Over view The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing intercon-
nections and integrity of components on Printed Circuits Boards by using the four TAP
signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
Data Register path will show the ID-Code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any port pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

Data Register s The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain



233

ATmega169/V

2514P–AVR–07/06

Bypass Register The Bypass Register consists of a single Shift Register stage. When the Bypass Regis-
ter is selected as path between TDI and TDO, the register is reset to 0 when leaving the
Capture-DR controller state. The Bypass Register can be used to shorten the scan
chain on a system when the other devices are to be tested.

Device Identification Regist er Figure 107 shows the structure of the Device Identification Register. 

Figur e 107.  The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The JTAG version
number follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega169 is listed in Table 101.

Manufacturer ID The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufac-
turer ID for ATMEL is listed in Table 102.

Reset Register The Reset Register is a test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the
unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the fuse settings for the clock options, the part will remain reset for a reset time-out
period (refer to “Clock Sources” on page 24) after releasing the Reset Register. The out-
put from this Data Register is not latched, so the reset will take place immediately, as
shown in Figure 108.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufactur er ID 1

4 bits 16 bits 11 bits 1-bit

Table 101.  AVR JTAG Part Number

Part  Number JTAG Part  Number (Hex)

ATmega169 0x9405

Table 102.  Manufacturer ID

Manufacturer JTAG Manufactor ID (Hex)

ATMEL 0x01F
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Figur e 108.  Reset Register

Bound ary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See “Boundary-scan Chain” on page 236 for a complete description.

Boundar y-scan Specific 
JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

EXTEST; 0x0 Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; 0x1 Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-
Register consists of a version number, a device number and the manufacturer code
chosen by JEDEC. This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan 
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

D Q
From

TDI

ClockDR · AVR_RESET

To 

TDO

From Other Internal and

External Reset Sources

Internal reset
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SAMPLE_PRELOAD; 0x2 Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as Data Register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. 
However, the output latches are not connected to the pins. 

AVR_RESET; 0xC The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as Data Register. Note that the reset will be
active as long as there is a logic “one” in the Reset Chain. The output from this chain is
not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; 0xF Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundar y-scan Related 
Register in I/O Memor y

MCU Contr ol Regist er – 
MCUCR

The MCU Control Register contains control bits for general MCU functions.

• Bit  7 – JTD:  JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed.
If this bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling
or enabling of the JTAG interface, a timed sequence must be followed when changing
this bit: The application software must write this bit to the desired value twice within four
cycles to change its value. Note that this bit must not be altered when using the On-chip
Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be
set to one. The reason for this is to avoid static current at the TDO pin in the JTAG
interface.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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MCU Status Register – 
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit  4 – JTRF:  JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

Boundar y-scan Chain The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection. 

Scanning t he Digit al Port Pins Figure 109 shows the Boundary-scan Cell for a bi-directional port pin with pull-up func-
tion. The cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn
– function, and a bi-directional pin cell that combines the three signals Output Control –
OCxn, Output Data – ODxn, and Input Data – IDxn, into only a two-stage Shift Register.
The port and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 110
shows a simple digital port pin as described in the section “I/O-Ports” on page 55. The
Boundary-scan details from Figure 109 replaces the dashed box in Figure 110.

When no alternate port function is present, the Input Data – ID – corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction – DD Register, and
the Pull-up Enable – PUExn – corresponds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 110 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuitry.

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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Figur e 109.  Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.
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Figur e 110.  General Port Pin Schematic Diagram

Scanning the RE SET Pin The RESET pin accepts 5V active low logic for standard reset operation, and 12V active
high logic for High Voltage Parallel programming. An observe-only cell as shown in Fig-
ure 111 is inserted both for the 5V reset signal; RSTT, and the 12V reset signal;
RSTHV. 

Figur e 111.  Observe-only Cell
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Scanning t he Cloc k Pins The AVR devices have many clock options selectable by fuses. These are: Internal RC
Oscillator, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal
Oscillator, and Ceramic Resonator.

Figure 112 shows how each Oscillator with external connection is supported in the scan
chain. The Enable signal is supported with a general Boundary-scan cell, while the
Oscillator/clock output is attached to an observe-only cell. In addition to the main clock,
the timer Oscillator is scanned in the same way. The output from the internal RC Oscilla-
tor is not scanned, as this Oscillator does not have external connections. 

Figur e 112.  Boundary-scan Cells for Oscillators and Clock Options

Table 103 summaries the scan registers for the external clock pin XTAL1, oscillators
with XTAL1/XTAL2 connections as well as 32kHz Timer Oscillator.

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift

between the internal Oscillator and the JTAG TCK clock. If possible, scanning an
external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time,
the clock configuration is considered fixed for a given application. The user is advised
to scan the same clock option as to be used in the final system. The enable signals
are supported in the scan chain because the system logic can disable clock options
in sleep modes, thereby disconnecting the Oscillator pins from the scan path if not
provided.

Table 103.  Scan Signals for the Oscillator(1)(2)(3)

Enable Signal Scanned Cl ock Line Clock Optio n 

Scanned Clock 
Line when not 

Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal

External Ceramic Resonator

1

OSC32EN OSC32CK Low Freq. External Crystal 1

0

1
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Scanning t he Analog 
Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 113.
The Boundary-scan cell from Figure 114 is attached to each of these signals. The sig-
nals are described in Table 104.

The Comparator need not be used for pure connectivity testing, since all analog inputs
are shared with a digital port pin as well.

Figur e 113.  Analog Comparator

Figur e 114.  General Boundary-scan cell Used for Signals for Comparator and ADC
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Scanning t he ADC Figure 115 shows a block diagram of the ADC with all relevant control and observe sig-
nals. The Boundary-scan cell from Figure 111 is attached to each of these signals. The
ADC need not be used for pure connectivity testing, since all analog inputs are shared
with a digital port pin as well. 

Figur e 115.  Analog to Digital Converter

The signals are described briefly in Table 105.

Table 104.  Boundary-scan Signals for the Analog Comparator

Signal 
Name

Direction as 
Seen fr om the 
Compara tor Descr iption

Recommen ded 
Input when Not 
in  Use

Outpu t Values when 
Recom mended 
Inputs  are Used

AC_IDLE input Turns off Analog 
Comparator when 
true

1 Depends upon µC 
code being executed

ACO output Analog 
Comparator Output

Will become 
input to µC code 
being executed

0

ACME input Uses output signal 
from ADC mux 
when true

0 Depends upon µC 
code being executed

ACBG input Bandgap 
Reference enable

0 Depends upon µC 
code being executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7

ADC_7

MUXEN_6

ADC_6

MUXEN_5

ADC_5

MUXEN_4

ADC_4

MUXEN_3

ADC_3

MUXEN_2

ADC_2

MUXEN_1

ADC_1

MUXEN_0

ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0

ADC_0

EXTCH

+

-
1x

ST

ACLK

AMPEN

1.11V

ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

PRECH

GNDEN

PASSEN

COMP

SCTEST
ADCBGEN

To Comparator

1.22V

ref

ACTEN

AREF
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Table 105.  Boundary-scan Signals for the ADC(1) 

Signal 
Name

Direction 
as Seen
from the
ADC Descr iption

Recommen-
ded Input 
when not
in Use

Outpu t Values when 
Recomme nded Inputs 
are Used, and CPU is  
not Us ing the ADC

COMP Output Comparator Output 0 0

ACLK Input Clock signal to 
differential amplifier 
implemented as 
Switch-cap filters

0 0

ACTEN Input Enable path from 
differential amplifier to 
the comparator

0 0

ADCBGEN Input Enable Band-gap 
reference as negative 
input to comparator

0 0

ADCEN Input Power-on signal to the 
ADC

0 0

AMPEN Input Power-on signal to the 
differential amplifier

0 0

DAC_9 Input Bit 9 of digital value to 
DAC

1 1

DAC_8 Input Bit 8 of digital value to 
DAC

0 0

DAC_7 Input Bit 7 of digital value to 
DAC

0 0

DAC_6 Input Bit 6 of digital value to 
DAC

0 0

DAC_5 Input Bit 5 of digital value to 
DAC

0 0

DAC_4 Input Bit 4 of digital value to 
DAC

0 0

DAC_3 Input Bit 3 of digital value to 
DAC

0 0

DAC_2 Input Bit 2 of digital value to 
DAC

0 0

DAC_1 Input Bit 1 of digital value to 
DAC

0 0

DAC_0 Input Bit 0 of digital value to 
DAC

0 0

EXTCH Input Connect ADC 
channels 0 - 3 to by-
pass path around 
differential amplifier

1 1

GNDEN Input Ground the negative 
input to comparator 
when true

0 0
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HOLD Input Sample & Hold signal. 
Sample analog signal 
when low. Hold signal 
when high. If 
differential amplifier is 
used, this signal must 
go active when ACLK 
is high.

1 1

IREFEN Input Enables Band-gap 
reference as AREF 
signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input Input Mux for negative 
input for differential 
signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative 
input for differential 
signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative 
input for differential 
signal, bit 0

0 0

PASSEN Input Enable pass-gate of 
differential amplifier.

1 1

PRECH Input Precharge output latch 
of comparator. (Active 
low)

1 1

Table 105.  Boundary-scan Signals for the ADC(1)  (Continued)

Signal 
Name

Direction 
as Seen
from the
ADC Descr iption

Recommen-
ded Input 
when not
in Use

Outpu t Values when 
Recomme nded Inputs 
are Used, and CPU is  
not Us ing the ADC
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Note: 1. Incorrect setting of the switches in Figure 115 will make signal contention and may
damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in Figure 115. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 105
should be used. The user is recommended not  to use the Differential Amplifier during
scan. Switch-Cap based differential amplifier requires fast operation and accurate timing
which is difficult to obtain when used in a scan chain. Details concerning operations of
the differential amplifier is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 115 with a successive
approximation algorithm implemented in the digital logic. When used in Boundary-scan,
the problem is usually to ensure that an applied analog voltage is measured within some
limits. This can easily be done without running a successive approximation algorithm:
apply the lower limit on the digital DAC[9:0] lines, make sure the output from the com-
parator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the
output from the comparator to be high. 

The ADC need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

When using the ADC, remember the following

• The port pin for the ADC channel in use must be configured to be an input with pull-
up disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed 
when enabling the ADC. The user is advised to wait at least 200ns after enabling the 
ADC before controlling/observing any ADC signal, or perform a dummy conversion 
before using the first result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD 
signal low (Sample mode).

SCTEST Input Switch-cap TEST 
enable. Output from 
differential amplifier is 
sent out to Port Pin 
having ADC_4

0 0

ST Input Output of differential 
amplifier will settle 
faster if this signal is 
high first two ACLK 
periods after AMPEN 
goes high.

0 0

VCCREN Input Selects Vcc as the 
ACC reference 
voltage.

0 0

Table 105.  Boundary-scan Signals for the ADC(1)  (Continued)

Signal 
Name

Direction 
as Seen
from the
ADC Descr iption

Recommen-
ded Input 
when not
in Use

Outpu t Values when 
Recomme nded Inputs 
are Used, and CPU is  
not Us ing the ADC
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As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3
when the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 105 are used unless other values are given in the
algorithm in Table 106. Only the DAC and port pin values of the Scan Chain are shown.
The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done
on the data scanned out when scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock
frequency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency
has to be at least five times the number of scan bits divided by the maximum hold time,
thold,max

Table 106.  Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Contr ol

PA3.
Pull-
up_
Enable

1
SAMPLE_
PRELOAD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6

Verify the 
COMP bit 
scanned 
out to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the 
COMP bit 
scanned 
out to be 1

1 0x200 0x08 1 1 0 0 0

The lower limit is:      1024 1.5V 0,95 5V/& & 291 0x123= =       
The upper limit is:      1024 1.5V 1.05 5V/& & 323 0x143= =
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ATmega169 Boundar y-
scan Or der

Table 107 shows the Scan order between TDI and TDO when the Boundary-scan chain
is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
109, PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, and PXn. Pull-
up_enable corresponds to FF2. Bit 4, 5, 6, and 7of Port F is not in the scan chain, since
these pins constitute the TAP pins when the JTAG is enabled.

Table 107.  ATmega169 Boundary-scan Order 

Bit Number Signa l Name Module

197 AC_IDLE Comparator

196 ACO

195 ACME

194 AINBG

193 COMP ADC

192 ACLK

191 ACTEN

190 PRIVATE_SIGNAL1(1)

189 ADCBGEN

188 ADCEN

187 AMPEN

186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4

180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH

175 GNDEN

174 HOLD

173 IREFEN

172 MUXEN_7

171 MUXEN_6

170 MUXEN_5

169 MUXEN_4
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168 MUXEN_3 ADC

167 MUXEN_2

166 MUXEN_1

165 MUXEN_0

164 NEGSEL_2

163 NEGSEL_1

162 NEGSEL_0

161 PASSEN

160 PRECH

159 ST

158 VCCREN

157 PE0.Data Port E

156 PE0.Control

155 PE0.Pull-up_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pull-up_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pull-up_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pull-up_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pull-up_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pull-up_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pull-up_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pull-up_Enable

133 PB0.Data Port B

Table 107.  ATmega169 Boundary-scan Order  (Continued)

Bit Number Signa l Name Module
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132 PB0.Control Port B

131 PB0.Pull-up_Enable

130 PB1.Data

129 PB1.Control

128 PB1.Pull-up_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pull-up_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pull-up_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pull-up_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pull-up_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pull-up_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pull-up_Enable

109 PG3.Data Port G

108 PG3.Control

107 PG3.Pull-up_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pull-up_Enable

103 PG5 (Observe Only)

102 RSTT Reset Logic 
(Observe-only)

101 RSTHV

100 EXTCLKEN Enable signals for main Clock/Oscillators

99 OSCON

98 RCOSCEN

97 OSC32EN

Table 107.  ATmega169 Boundary-scan Order  (Continued)

Bit Number Signa l Name Module
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96 EXTCLK (XTAL1) Clock input and Oscillators for the main 
clock
(Observe-only)95 OSCCK

94 RCCK

93 OSC32CK

92 PD0.Data Port D

91 PD0.Control

90 PD0.Pull-up_Enable

89 PD1.Data

88 PD1.Control

87 PD1.Pull-up_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pull-up_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pull-up_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pull-up_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pull-up_Enable

74 PD6.Data

73 PD6.Control

72 PD6.Pull-up_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pull-up_Enable

68 PG0.Data Port G

67 PG0.Control

66 PG0.Pull-up_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pull-up_Enable

62 PC0.Data Port C

61 PC0.Control

Table 107.  ATmega169 Boundary-scan Order  (Continued)

Bit Number Signa l Name Module
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60 PC0.Pull-up_Enable Port C

59 PC1.Data

58 PC1.Control

57 PC1.Pull-up_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pull-up_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pull-up_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pull-up_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pull-up_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pull-up_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pull-up_Enable

38 PG2.Data Port G

37 PG2.Control

36 PG2.Pull-up_Enable

35 PA7.Data Port A

34 PA7.Control

33 PA7.Pull-up_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pull-up_Enable

29 PA5.Data

28 PA5.Control

27 PA5.Pull-up_Enable

26 PA4.Data

25 PA4.Control

Table 107.  ATmega169 Boundary-scan Order  (Continued)

Bit Number Signa l Name Module
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Note: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.

Boundar y-scan 
Description Langua ge 
Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-scan Data Register are included in this description.
A BSDL file for ATmega169 is available.

24 PA4.Pull-up_Enable Port A

23 PA3.Data

22 PA3.Control

21 PA3.Pull-up_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pull-up_Enable

17 PA1.Data

16 PA1.Control

15 PA1.Pull-up_Enable

14 PA0.Data

13 PA0.Control

12 PA0.Pull-up_Enable

11 PF3.Data Port F

10 PF3.Control

9 PF3.Pull-up_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pull-up_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pull-up_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pull-up_Enable

Table 107.  ATmega169 Boundary-scan Order  (Continued)

Bit Number Signa l Name Module
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Boot Loader Suppor t 
– Read-While-Write 
Self-Pr ogram ming

The Boot Loader Support provides a real Read-While-Write Self-Programming mecha-
nism for downloading and uploading program code by the MCU itself. This feature
allows flexible application software updates controlled by the MCU using a Flash-resi-
dent Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the
Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the
Boot Loader memory. The Boot Loader can thus even modify itself, and it can also
erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of
Boot Lock bits which can be set independently. This gives the user a unique flexibility to
select different levels of protection. 

Boot Loader Features • Read-While-Write Self-Pr ogrammi ng
• Flexible Bo ot Memor y Size
• High Securi ty  (Separate Boot Lock Bits  for a Flexible Protectio n)
• Separate  Fuse to Se lect Reset Vector
• Optim ized Page(1) Size
• Code Efficien t Algorithm
• Efficient R ead-Mod ify-Wr ite  Suppor t

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 121 on page
269) used during programming. The page organization does not affect normal
operation.

Application and Boot 
Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the
Boot Loader section (see Figure 117). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 113 on page 264 and Figure 117. These two
sections can have different level of protection since they have different sets of Lock bits.

Appl icat ion Sect ion The Application section is the section of the Flash that is used for storing the application
code. The protection level for the Application section can be selected by the application
Boot Lock bits (Boot Lock bits 0), see Table 109 on page 256. The Application section
can never store any Boot Loader code since the SPM instruction is disabled when exe-
cuted from the Application section.

BLS – Bo ot Lo ader Sect ion While the Application section is used for storing the application code, the The Boot
Loader software must be located in the BLS since the SPM instruction can initiate a pro-
gramming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section
can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 110 on page
256.

Read-While-Write and No 
Read-While-Write Flash 
Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on which address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 114 on page 264 and Figure 117 on page 255.
The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section 
can be read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted 
during the entire operation.
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Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write sec-
tion” refers to which section that is being programmed (erased or written), not which
section that actually is being read during a Boot Loader software update.

RWW – Read-Whi le-Wri te 
Section

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW sec-
tion. During an on-going programming, the software must ensure that the RWW section
never is being read. If the user software is trying to read code that is located inside the
RWW section (i.e., by a call/jmp/lpm or an interrupt) during programming, the software
might end up in an unknown state. To avoid this, the interrupts should either be disabled
or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory
Control and Status Register (SPMCSR) will be read as logical one as long as the RWW
section is blocked for reading. After a programming is completed, the RWWSB must be
cleared by software before reading code located in the RWW section. See “Store Pro-
gram Memory Control and Status Register – SPMCSR” on page 257. for details on how
to clear RWWSB.

NRWW – No Read-While-Write 
Section

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire Page Erase or Page Write operation.

Table 108.  Read-While-Write Features

Whic h Section does  the Z-
pointer Ad dress  During the 

Programming ?

Which Section Can 
be Read Du ring  
Programm ing?

Is the CPU 
Halted?

Read-While-Write 
Suppor ted?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Figur e 116.  Read-While-Write vs. No Read-While-Write

Read-While-Write

(RWW) Section

No Read-While-Write 

(NRWW) Section

Z-pointer

Addresses RWW

Section

Z-pointer

Addresses NRWW

Section

CPU is Halted

During the Operation
Code Located in 

NRWW Section

Can be Read During

the Operation
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Figur e 117.  Memory Sections

Note: 1. The parameters in the figure above are given in Table 113 on page 264.

Boot Loader Loc k Bits If no Boot Loader capability is needed, the entire Flash is available for application code.
The Boot Loader has two separate sets of Boot Lock bits which can be set indepen-
dently. This gives the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 109 and Table 110 for further details. The Boot Lock bits and general Lock
bits can be set in software and in Serial or Parallel Programming mode, but they can be
cleared by a Chip Erase command only. The general Write Lock (Lock Bit mode 2) does
not control the programming of the Flash memory by SPM instruction. Similarly, the gen-
eral Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by
LPM/SPM, if it is attempted. 
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Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Entering the Boot Loader 
Program

Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI inter-
face. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is
started after a reset. After the application code is loaded, the program can start execut-
ing the application code. Note that the fuses cannot be changed by the MCU itself. This
means that once the Boot Reset Fuse is programmed, the Reset Vector will always
point to the Boot Loader Reset and the fuse can only be changed through the serial or
parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 109.  Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB 0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

Table 110.  Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB 1 Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If Interrupt 
Vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If Interrupt Vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.

Table 111.  Boot Reset Fuse(1)

BOOTRST Reset Ad dress

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 113 on page 264)
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Store Pr ogram Memor y 
Cont rol and Status Regist er – 
SPMCSR

The Store Program Memory Control and Status Register contains the control bits
needed to control the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interru pt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCSR Register is cleared.

• Bit  6 – RWWSB: Read-While-Wri te Section Bus y

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit  5 – Res:  Reserve d Bi t

This bit is a reserved bit in the ATmega169 and always read as zero.

• Bit 4 – RWWSRE: Read-Whi le-Wri te Sectio n Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a Page Erase or a Page Write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

• Bit  3 – BLBSET: Boot  Loc k Bit  Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits and general Lock bits, according to the data in R0.
The data in R1 and the address in the Z-pointer are ignored. The BLBSET bit will auto-
matically be cleared upon completion of the Lock bit set, or if no SPM instruction is
executed within four clock cycles. 

An LPM instruction within three cycles after BLBSET and SPMEN are set in the
SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0 in
the Z-pointer) into the destination register. See “Reading the Fuse and Lock Bits from
Software” on page 261 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer. The data in R1 and R0 are
ignored. The PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM
instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0



258 ATmega169/V
2514P–AVR–07/06

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon
completion of a Page Erase, or if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

• Bit 0 – SPMEN: Store P rogr am Memor y Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will
auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed
within four clock cycles. During Page Erase and Page Write, the SPMEN bit remains
high until the operation is completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the
lower five bits will have no effect.

Addressing the Flash 
During Self-
Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 121 on page 269), the Program
Counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 118. Note that the Page Erase
and Page Write operations are addressed independently. Therefore it is of major impor-
tance that the Boot Loader software addresses the same page in both the Page Erase
and Page Write operation. Once a programming operation is initiated, the address is
latched and the Z-pointer can be used for other operations. 

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock
bits. The content of the Z-pointer is ignored and will have no effect on the operation. The
LPM instruction does also use the Z-pointer to store the address. Since this instruction
addresses the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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Figur e 118.  Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 118 are listed in Table 115 on page 265.

2. PCPAGE and PCWORD are listed in Table 121 on page 269.

Self-Pr ogramming the 
Flash

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the Page Erase command or between a Page Erase and a Page Write
operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both
the Page Erase and Page Write operation is addressing the same page. See “Simple
Assembly Code Example for a Boot Loader” on page 263 for an assembly code
example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER
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Performin g Page Erase b y 
SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer will be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page 
Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filli ng the Tempora ry Buf fer 
(Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR. The content of PCWORD in the Z-register is used to address the data in the
temporary buffer. The temporary buffer will auto-erase after a Page Write operation or
by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that
it is not possible to write more than one time to each address without erasing the tempo-
rary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
will be lost.

Performing a Page Write To execute Page Write, set up the address in the Z-pointer, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer must be written to zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page 
Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using t he SPM Interrupt If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 46.

Cons ideration While  Updat ing 
BLS

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

Prevent Reading the RWW 
Section During Self -
Progra mming

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector
table should be moved to the BLS as described in “Interrupts” on page 46, or the inter-
rupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See
“Simple Assembly Code Example for a Boot Loader” on page 263 for an example.
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Setting  the Boot  Loader Loc k 
Bits b y SPM

To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0,
write “X0001001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR.

See Table 109 and Table 110 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when
writing the Lock bits. When programming the Lock bits the entire Flash can be read dur-
ing the operation.

EEPROM Write Prevents 
Writ ing to S PMCSR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.

Reading the Fuse and Loc k 
Bit s from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destina-
tion register. The BLBSET and SPMEN bits will auto-clear upon completion of reading
the Lock bits or if no LPM instruction is executed within three CPU cycles or no SPM
instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared,
LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value
of the Fuse Low byte (FLB) will be loaded in the destination register as shown below.
Refer to Table 120 on page 268 for a detailed description and mapping of the Fuse Low
byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination
register as shown below. Refer to Table 119 on page 268 for detailed description and
mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB 12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB 12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
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the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the destina-
tion register as shown below. Refer to Table 118 on page 267 for detailed description
and mapping of the Extended Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

Preventing Flash Corru ption During periods of low VCC, the Flash program can be corrupted because the supply volt-
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied. 

A Flash program corruption can be caused by two situations when the voltage is too low.
First, a regular write sequence to the Flash requires a minimum voltage to operate cor-
rectly. Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage
for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one
is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot 
Loader Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if 
the operating voltage matches the detection level. If not, an external low VCC 
reset protection circuit can be used. If a reset occurs while a write operation is in 
progress, the write operation will be completed provided that the power supply 
voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCSR Register and thus the Flash from unintentional 
writes.

Progra mming Time f or Flas h 
when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 112 shows the typi-
cal programming time for Flash accesses from the CPU.

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

Table 112.  SPM Programming Time

Symbol Min Pr ogr amming Time Max Progr amming Time

Flash write (Page Erase, Page Write, 
and write Lock bits by SPM)

3.7 ms 4.5 ms
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Simple  Assemb ly Code 
Example f or a Bo ot Loa der

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
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ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

ATmega169 Boot Lo ader 
Parameters

In Table 113 through Table 115, the parameters used in the description of the Self-Pro-
gramming are given. 

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 117

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on
page 253 and “RWW – Read-While-Write Section” on page 253.

Table 113.  Boot Size Configuration(1)
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1 1 128
words

2 0x0000 - 
0x1F7F

0x1F80 - 
0x1FFF

0x1F7F 0x1F80 

1 0 256
words

4 0x0000 - 
0x1EFF

0x1F00 - 
0x1FFF

0x1EFF 0x1F00

0 1 512
words

8 0x0000 - 
0x1DFF

0x1E00 - 
0x1FFF

0x1DFF 0x1E00

0 0 1024
words

16 0x0000 - 
0x1BFF

0x1C00 - 
0x1FFF

0x1BFF 0x1C00

Table 114.  Read-While-Write Limit(1)

Sect ion Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF
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Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 258 for details about
the use of Z-pointer during Self-Programming.

Table 115.  Explanation of different variables used in Figure 118 and the mapping to the
Z-pointer(1)

Variable
Corresp ondin g 

Z-value Description

PCMSB 12 Most significant bit in the Program Counter. 
(The Program Counter is 13 bits PC[12:0])

PAGEMSB 5 Most significant bit which is used to address the 
words within one page (64 words in a page 
requires six bits PC [5:0]).

ZPCMSB Z13 Bit in Z-register that is mapped to PCMSB. 
Because Z0 is not used, the ZPCMSB equals 
PCMSB + 1.

ZPAGEMSB Z6 Bit in Z-register that is mapped to PAGEMSB. 
Because Z0 is not used, the ZPAGEMSB equals 
PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7 Program Counter page address: Page select, 
for Page Erase and Page Write

PCWORD PC[5:0] Z6:Z1 Program Counter word address: Word select, 
for filling temporary buffer (must be zero during 
Page Write operation)
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Memor y 
Programm ing

Program And Data 
Memor y Loc k Bits

The ATmega169 provides six Lock bits which can be left unprogrammed (“1”) or can be
programmed (“0”) to obtain the additional features listed in Table 117. The Lock bits can
only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 116.  Lock Bit Byte(1)

Loc k Bit Byte Bit N o Descri ption Defaul t Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 117.  Lock Bit Protection Modes(1)(2) 

Memory Lock Bi ts Protectio n Type

LB Mo de LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is 
disabled in Parallel and Serial Programming mode. The 
Fuse bits are locked in both Serial and Parallel 
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in Parallel and Serial Programming 
mode. The Boot Lock bits and Fuse bits are locked in both 
Serial and Parallel Programming mode.(1)

BLB 0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

BLB 1 Mode BLB12 BLB11
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Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The ATmega169 has three Fuse bytes. Table 118 - Table 120 describe briefly the func-
tionality of all the fuses and how they are mapped into the Fuse bytes. Note that the
fuses are read as logical zero, “0”, if they are programmed.

Notes: 1. See Table 17 on page 40 for BODLEVEL Fuse decoding.
2. This bit should never be programmed.

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If Interrupt 
Vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If Interrupt Vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.

Table 117.  Lock Bit Protection Modes(1)(2)  (Continued)

Memory Lock Bi ts Protectio n Type

Table 118.  Extended Fuse Byte

Fuse Low Byte Bit No Descrip tion Defaul t Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

BODLEVEL2(1) 3 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

RESERVED(2) 0 1 (unprogrammed)



268 ATmega169/V
2514P–AVR–07/06

Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 113 on
page 264 for details.

3. See “Watchdog Timer Control Register – WDTCR” on page 43 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of

Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the
clock system to be running in all sleep modes. This may increase the power
consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be dis-
abled. This to avoid static current at the TDO pin in the JTAG interface.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock
source. See Table 16 on page 38 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See
Table 6 on page 26 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTE7. See “Clock Out-
put Buffer” on page 29 for details.

4. See “System Clock Prescaler” on page 29 for details.

Table 119.  Fuse High Byte

Fuse High 
Byte

Bit 
No Descrip tion Defaul t Value

OCDEN(4) 7
Enable OCD

1 (unprogrammed, OCD 
disabled)

JTAGEN(5) 6
Enable JTAG

0 (programmed, JTAG 
enabled)

SPIEN(1) 5
Enable Serial Program and Data 
Downloading

0 (programmed, SPI prog. 
enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved 
through the Chip Erase

1 (unprogrammed, EEPROM 
not preserved)

BOOTSZ1 2
Select Boot Size (see Table 113 for 
details) 0 (programmed)(2)

BOOTSZ0 1
Select Boot Size (see Table 113 for 
details) 0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 120.  Fuse Low Byte

Fuse Low By te Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)



269

ATmega169/V

2514P–AVR–07/06

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the
Lock bits.

Latching  of Fuses The fuse values are latched when the device enters programming mode and changes of
the fuse values will have no effect until the part leaves Programming mode. This does
not apply to the EESAVE Fuse which will take effect once it is programmed. The fuses
are also latched on Power-up in Normal mode.

Signature Bytes All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.
The three bytes reside in a separate address space.

For the ATmega169 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x94 (indicates 16KB Flash memory).

3. 0x002: 0x05 (indicates ATmega169 device when 0x001 is 0x94).

Calibr ation Byte The ATmega169 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset,
this byte is automatically written into the OSCCAL Register to ensure correct frequency
of the calibrated RC Oscillator.

Page Size

Parallel Pr ogramming 
Parameter s, Pin 
Mapping, and 
Commands

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the ATmega169. Pulses
are assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega169 are referenced by signal names describing
their functionality during parallel programming, see Figure 119 and Table 123. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 125.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 126.

Table 121.  No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

8K words (16K bytes) 64 words PC[5:0] 128 PC[12:6] 12

Table 122.  No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
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Figur e 119.  Parallel Programming
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Table 123.  Pin Name Mapping

Signal Name in  
Programmi ng Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I
Byte Select 1 (“0” selects low byte, “1” selects high 
byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I
Byte Select 2 (“0” selects low byte, “1” selects 2’nd 
high byte).

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).

Table 124.  Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 125.  XA1 and XA0 Coding

XA1 XA0 Acti on when XTAL1 is  Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte 
determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle
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Serial Pr ogramming Pin 
Mapping

Table 126.  Command Byte Bit Coding

Comma nd By te Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 127.  Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB2 I Serial Data in

MISO PB3 O Serial Data out

SCK PB1 I Serial Clock
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Parallel Pr ogramming

Enter Pr ogramming Mo de The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 124 on page 271 to “0000” and wait at 
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns 
after +12V has been applied to RESET, will cause the device to fail entering pro-
gramming mode.

5. Wait at least 50 µs before sending a new command.

Cons iderations  for Efficien t 
Progra mming

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless 
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 
word window in Flash or 256 byte EEPROM. This consideration also applies to 
Signature bytes reading.

Chip Era se The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or EEPROM
are reprogrammed.
Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is

programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

Progra mming t he Flash The Flash is organized in pages, see Table 121 on page 269. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte
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1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 121 for 
signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 120 on page 275. Note
that if less than eight bits are required to address words in the page (pagesize < 256),
the most significant bit(s) in the address low byte are used to address the page when
performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. 
RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 121 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.
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Figur e 120.  Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 121 on page 269.

Figur e 121.  Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

Program ming the EEPR OM The EEPROM is organized in pages, see Table 122 on page 269. When programming
the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to “Programming the Flash” on page 273 for details on
Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

PROGRAM MEMORY

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND
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PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F
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K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. 
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 
122 for signal waveforms).

Figur e 122.  Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at 
DATA.

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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Progra mming t he Fuse Low 
Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 273 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

Progra mming t he Fuse High 
Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming
the Flash” on page 273 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Progra mming t he Extended 
Fuse Bit s

The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
ming the Flash” on page 273 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figur e 123.  Programming the FUSES Waveforms

Progra mming t he Loc k Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot 
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2



278 ATmega169/V
2514P–AVR–07/06

Reading the Fuse and Loc k 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 273 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can 
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can 
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits 
can now be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be 
read at DATA (“0” means programmed).

6. Set OE to “1”.

Figur e 124.  Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

Reading the  Signa ture Byte s The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at 
DATA.

4. Set OE to “1”.

Reading the  Calibra tion Byt e The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
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Paralle l Progra mming 
Characteristics

Fig u re 125.  Parallel Programming Timing, Including some General Timing
Requirements

Figure 126.  Parallel Programming Timing, Loading Sequence with Timing
Requirements(1)

Note: 1. The timing requirements shown in Figure 125 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to loading operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)
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tWLWH

tDVXH tXLDX

tPLWL
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PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA 
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)
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Figur e 127.  Parallel Programming Timing, Reading Sequence (within the Same Page)
with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 125 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to reading operation.

Table 128.  Parallel Programming Characteristics, VCC = 5V ± 10% 

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 0A

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 0s

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA 
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
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Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.

2.  tWLRH_CE is valid for the Chip Erase command.

Serial Do wnloading Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in
Table 127 on page 272, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface.

Figur e 128.  Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the Serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high
periods for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 128.  Parallel Programming Characteristics, VCC = 5V ± 10%  (Continued)

Symbol Parameter Min Typ Max Units

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V
(2)
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Serial Programming 
Algorith m

When writing serial data to the ATmega169, data is clocked on the rising edge of SCK.

When reading data from the ATmega169, data is clocked on the falling edge of SCK.
See Figure 129 for timing details.

To program and verify the ATmega169 in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 130):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In
some systems, the programmer can not guarantee that SCK is held low during
power-up. In this case, RESET must be given a positive pulse of at least two
CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of
synchronization. When in sync. the second byte (0x53), will echo back when
issuing the third byte of the Programming Enable instruction. Whether the echo
is correct or not, all four bytes of the instruction must be transmitted. If the 0x53
did not echo back, give RESET a positive pulse and issue a new Programming
Enable command. 

4. The Flash is programmed one page at a time. The page size is found in Table
121 on page 269. The memory page is loaded one byte at a time by supplying
the 6 LSB of the address and data together with the Load Program Memory
Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program
Memory Page is stored by loading the Write Program Memory Page instruction
with the 7 MSB of the address. If polling (RDY/BSY) is not used, the user must
wait at least tWD_FLASH before issuing the next page. (See Table 129.) Accessing
the serial programming interface before the Flash write operation completes can
result in incorrect programming.

5. A:  The EEPROM array is programmed one byte at a time by supplying the
address and data together with the appropriate Write instruction. An EEPROM
memory location is first automatically erased before new data is written. If polling
(RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the
next byte (See Table 129). In a chip erased device, no 0xFFs in the data file(s)
need to be programmed.
B:  The EEPROM array is programmed one page at a time. The Memory page is
loaded one byte at a time by supplying the 2 LSB of the address and data
together with the Load EEPROM Memory Page instruction. The EEPROM Mem-
ory Page is stored by loading the Write EEPROM Memory Page Instruction with
the 4 MSB of the address. When using EEPROM page access only byte loca-
tions loaded with the Load EEPROM Memory Page instruction is altered. The
remaining locations remain unchanged. If polling (RDY/BSY) is not used, the user
must wait at least tWD_EEPROM before issuing the next page (See Table 129). In a
chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns
the content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence
normal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off
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Figur e 129.  Serial Programming Waveforms

Table 129.  Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minim um Wait Dela y

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
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Table 130.  Serial Programming Instruction Set

Instr uction

Instruction For mat

OperationByte 1 Byte 2 Byte  3 Byte4

Programming Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after 
RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read Program Memory 0010 H000 000a aaaa bbbb bbbb oooo oooo Read H (high or low) data o from 
Program memory at word address a:b.

Load Program Memory Page 0100 H000 000x xxxx xxbb bbbb iiii iiii Write H (high or low) data i to Program 
Memory page at word address b. Data 
low byte must be loaded before Data 
high byte is applied within the same 
address.

Write Program Memory Page 0100 1100 000a aaaa bbxx xxxx xxxx xxxx Write Program Memory Page at 
address a:b.

Read EEPROM Memory 1010 0000 000x xxaa bbbb bbbb oooo oooo Read data o from EEPROM memory at 
address a:b.

Write EEPROM Memory 1100 0000 000x xxaa bbbb bbbb iiii iiii Write data i to EEPROM memory at 
address a:b.

Load EEPROM Memory 
Page (page access)

1100 0001 0000 0000 0000 00bb iiii iiii Load data i to EEPROM memory page 
buffer. After data is loaded, program 
EEPROM page.

Write EEPROM Memory 
Page (page access)

1100 0010 00xx xxaa bbbb bb00 xxxx xxxx
Write EEPROM page at address a:b.

Read Lock bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo Read Lock bits. “0” = programmed, “1” 
= unprogrammed. See Table 116 on 
page 266 for details.

Write Lock bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii Write Lock bits. Set bits = “0” to 
program Lock bits. See Table 116 on 
page 266 for details.

Read Signature Byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read Signature Byte o at address b.

Write Fuse bits 1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to 
unprogram. See Table 88 on page 205 
for details.

Write Fuse High bits 1010 1100 1010 1000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to 
unprogram. See Table 87 on page 198 
for details.

Write Extended Fuse Bits 1010 1100 1010 0100 xxxx xxxx xxxx iii1 Set bits = “0” to program, “1” to 
unprogram. See Table 118 on page 
267 for details.

Read Fuse bits 0101 0000 0000 0000 xxxx xxxx oooo oooo Read Fuse bits. “0” = programmed, “1” 
= unprogrammed. See Table 88 on 
page 205 for details.

Read Fuse High bits 0101 1000 0000 1000 xxxx xxxx oooo oooo Read Fuse High bits. “0” = pro-
grammed, “1” = unprogrammed. See 
Table 87 on page 198 for details.
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Note: a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

SPI Serial Programm ing 
Characteristics

For characteristics of the SPI module see “SPI Timing Characteristics” on page 301.

Programming via the 
JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
Running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-scan or On-
chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maxi-
mum frequency of the chip. The System Clock Prescaler can not be used to divide the
TCK Clock Input into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

Progra mming Spe cific JT AG 
Ins truct ions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG
instructions useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. The state machine sequence
for changing the instruction word is shown in Figure 130.

Read Extended Fuse Bits 0101 0000 0000 1000 xxxx xxxx oooo oooo Read Extended Fuse bits. “0” = pro-
grammed, “1” = unprogrammed. See 
Table 118 on page 267 for details.

Read Calibration Byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read Calibration Byte

Poll RDY/BSY 1111 0000 0000 0000 xxxx xxxx xxxx xxxo If o = “1”, a programming operation is 
still busy. Wait until this bit returns to 
“0” before applying another command.

Table 130.  Serial Programming Instruction Set (Continued)

Instr uction

Instruction For mat

OperationByte 1 Byte 2 Byte  3 Byte4
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Figur e 130.  State Machine Sequence for Changing the Instruction Word

AVR_RESET (0xC) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode
or taking the device out from the Reset mode. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as Data Register. Note that the reset
will be active as long as there is a logic “one” in the Reset Chain. The output from this
chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABL E (0x4) The AVR specific public JTAG instruction for enabling programming via the JTAG port.
The 16-bit Programming Enable Register is selected as Data Register. The active states
are the following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value, 
and Programming mode is entered if the signature is valid.
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PROG_COMMANDS (0x5) The AVR specific public JTAG instruction for entering programming commands via the
JTAG port. The 15-bit Programming Command Register is selected as Data Register.
The active states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the 
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not 
always required, see Table 131 below).

PROG_PAGELOAD (0x6) The AVR specific public JTAG instruction to directly load the Flash data page via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is
physically the 8 LSBs of the Programming Command Register. The active states are the
following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary 
register. A write sequence is initiated that within 11 TCK cycles loads the content of 
the temporary register into the Flash page buffer. The AVR automatically alternates 
between writing the low and the high byte for each new Update-DR state, starting 
with the low byte for the first Update-DR encountered after entering the 
PROG_PAGELOAD command. The Program Counter is pre-incremented before 
writing the low byte, except for the first written byte. This ensures that the first data is 
written to the address set up by PROG_COMMANDS, and loading the last location 
in the page buffer does not make the program counter increment into the next page.

PROG_PAGEREAD (0x7) The AVR specific public JTAG instruction to directly capture the Flash content via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is
physically the 8 LSBs of the Programming Command Register. The active states are the
following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data 
Byte Register. The AVR automatically alternates between reading the low and the 
high byte for each new Capture-DR state, starting with the low byte for the first 
Capture-DR encountered after entering the PROG_PAGEREAD command. The 
Program Counter is post-incremented after reading each high byte, including the 
first read byte. This ensures that the first data is captured from the first address set 
up by PROG_COMMANDS, and reading the last location in the page makes the 
program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

Data Register s The Data Registers are selected by the JTAG instruction registers described in section
“Programming Specific JTAG Instructions” on page 285. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register



288 ATmega169/V
2514P–AVR–07/06

Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It
is required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out
period (refer to “Clock Sources” on page 24) after releasing the Reset Register. The out-
put from this Data Register is not latched, so the reset will take place immediately, as
shown in Figure 108 on page 234.

Programmin g Enable Regist er The Programming Enable Register is a 16-bit register. The contents of this register is
compared  to  the  p rog ramming  enab le  s igna tu re ,  b ina ry  code
0b1010_0011_0111_0000. When the contents of the register is equal to the program-
ming enable signature, programming via the JTAG port is enabled. The register is reset
to 0 on Power-on Reset, and should always be reset when leaving Programming mode.

Figur e 131.  Programming Enable Register
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Progra mming Comman d 
Register

The Programming Command Register is a 15-bit register. This register is used to seri-
ally shift in programming commands, and to serially shift out the result of the previous
command, if any. The JTAG Programming Instruction Set is shown in Table 131. The
state sequence when shifting in the programming commands is illustrated in Figure 133.

Figur e 132.  Programming Command Register
TDI

TDO

S

T

R

O

B

E

S

A

D

D

R

E

S

S

/

D

A

T

A

Flash
EEPROM

Fuses
Lock Bits



290 ATmega169/V
2514P–AVR–07/06

Table 131.  JTAG Programming Instruction 
Set  a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instr uction TDI Sequenc e TDO Sequence Notes

1a. Chip Erase 0100011_10000000
0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiii i xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiii i xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page 0110111_00000000

0110101_00000000
0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiii i xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx
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5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiii i xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte 0111011_00000000
0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiii i xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte 0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiii i xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte 0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iii iii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits 0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8e. Read Lock Bits(9) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxooooo o
(5)

Table 131.  JTAG Programming Instruction  (Continued)
Set  (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instr uction TDI Sequenc e TDO Sequence Notes
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Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 118 on page 267
7. The bit mapping for Fuses High byte is listed in Table 119 on page 268
8. The bit mapping for Fuses Low byte is listed in Table 120 on page 268
9. The bit mapping for Lock bits byte is listed in Table 116 on page 266
10. Address bits exceeding PCMSB and EEAMSB (Table 121 and Table 122) are don’t care
11. All TDI and TDO sequences are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits 0111010_00000000

0111110_00000000
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse Ext. byte
Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 131.  JTAG Programming Instruction  (Continued)
Set  (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instr uction TDI Sequenc e TDO Sequence Notes
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Figur e 133.  State Machine Sequence for Changing/Reading the Data Word

Flash Data Byt e Regist er The Flash Data Byte Register provides an efficient way to load the entire Flash page
buffer before executing Page Write, or to read out/verify the content of the Flash. A state
machine sets up the control signals to the Flash and senses the strobe signals from the
Flash, thus only the data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit tempo-
rary register. During page load, the Update-DR state copies the content of the scan
chain over to the temporary register and initiates a write sequence that within 11 TCK
cycles loads the content of the temporary register into the Flash page buffer. The AVR
automatically alternates between writing the low and the high byte for each new Update-
DR state, starting with the low byte for the first Update-DR encountered after entering
the PROG_PAGELOAD command. The Program Counter is pre-incremented before
writing the low byte, except for the first written byte. This ensures that the first data is
written to the address set up by PROG_COMMANDS, and loading the last location in
the page buffer does not make the Program Counter increment into the next page.

During Page Read, the content of the selected Flash byte is captured into the Flash
Data Byte Register during the Capture-DR state. The AVR automatically alternates
between reading the low and the high byte for each new Capture-DR state, starting with
the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD
command. The Program Counter is post-incremented after reading each high byte,
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including the first read byte. This ensures that the first data is captured from the first
address set up by PROG_COMMANDS, and reading the last location in the page makes
the program counter increment into the next page.

Figur e 134.  Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During
normal operation in which eight bits are shifted for each Flash byte, the clock cycles
needed to navigate through the TAP controller automatically feeds the state machine for
the Flash Data Byte Register with sufficient number of clock pulses to complete its oper-
ation transparently for the user. However, if too few bits are shifted between each
Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle
state for some TCK cycles to ensure that there are at least 11 TCK cycles between each
Update-DR state.

Progra mming Algorith m All references below of type “1a”, “1b”, and so on, refer to Table 131.

Entering Pr ogra mming  Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the 
Programming Enable Register.

Leaving Pr ogramming Mod e 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the 
programming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Performin g Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for 
tWLRH_CE (refer to Table 128 on page 280).
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Progra mming t he Flash Before programming the Flash a Chip Erase must be performed, see “Performing Chip
Erase” on page 294.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH 
(refer to Table 128 on page 280).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD 
(refer to Table 121 on page 269) is used to address within one page and must be 
written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, 
starting with the LSB of the first instruction in the page and ending with the MSB 
of the last instruction in the page. Use Update-DR to copy the contents of the 
Flash Data Byte Register into the Flash page location and to auto-increment the 
Program Counter before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH 
(refer to Table 128 on page 280).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD 
(refer to Table 121 on page 269) is used to address within one page and must be 
written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page 
(or Flash), starting with the LSB of the first instruction in the page (Flash) and 
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ending with the MSB of the last instruction in the page (Flash). The Capture-DR 
state both captures the data from the Flash, and also auto-increments the pro-
gram counter after each word is read. Note that Capture-DR comes before the 
shift-DR state. Hence, the first byte which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Program ming the EEPR OM Before programming the EEPROM a Chip Erase must be performed, see “Performing
Chip Erase” on page 294.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for 
tWLRH (refer to Table 128 on page 280).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM.

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM.

Progra mming t he Fuses 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will pro-
gram the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH 
(refer to Table 128 on page 280).

6. Load data low byte using programming instructions 6e. A “0” will program the 
fuse, a “1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH 
(refer to Table 128 on page 280).
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Progra mming t he Loc k Bits 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the 
corresponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for 
tWLRH (refer to Table 128 on page 280).

Reading the  Fuses and  Lock 
Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

Reading the  Signa ture Byte s 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second 
and third signature bytes, respectively.

Reading the  Calibra tion Byt e 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
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Electrical Characteristi cs

Absolute Maxim um Ratings*

DC Characteristics

Operating Temperature.................................. -55#C to +125#C *NOTICE: Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 400.0 mA

TA = -40#C to 85#C, VCC = 1.8V to 5.5V (unless otherwise noted) 

Symbo l Parameter Condit ion Min. Typ. Max. Units

VIL
Input Low Voltage except 
XTAL1 and RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIH
Input High Voltage except 
XTAL1 and RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIL1
Input Low Voltage 

XTAL1 pins
VCC = 1.8V - 5.5V -0.5 0.1VCC

(1) V

VIH1
Input High Voltage, 
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIL2
Input Low Voltage, 
RESET pins

VCC = 1.8V - 5.5V -0.5
0.1VCC

(1)

0.2VCC
(1) V

VIH2
Input High Voltage, 
RESET pins

VCC = 1.8V - 5.5V 0.9VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3), 
Port A, C, D, E, F, G

IOL = 10mA, VCC = 5V
IOL = 5mA, VCC = 3V

0.7
0.5

V

VOL1
Output Low Voltage(3), 
Port B

IOL = 20mA, VCC = 5V
IOL = 10mA, VCC = 3V

0.7
0.5

V

VOH
Output High Voltage(4), 
Port A, C, D, E, F, G

IOH = -10mA, VCC = 5V
IOH = -5mA, VCC = 3V

4.2
2.3

V

VOH1
Output High Voltage(4), 
Port B

IOH = -20mA, VCC = 5V
IOH = -10mA, VCC = 3V

4.2
2.3

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 30 60 k.

RPU I/O Pin Pull-up Resistor 20 50 k.



299

ATmega169/V

2514P–AVR–07/06

Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA

at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10mA
at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOH, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

ICC

Power Supply Current 
(All bits set in the “Power 
Reduction Register” on 
page 34)

Active 1MHz, VCC = 2V 0.44 mA

Active 4MHz, VCC = 3V 2.5 mA

Active 8MHz, VCC = 5V 9.5 mA

Idle 1MHz, VCC = 2V 0.2 mA

Idle 4MHz, VCC = 3V 0.8 mA

Idle 8MHz, VCC = 5V 3.3 mA

Power-down mode
WDT enabled, VCC = 3V <8 10 µA

WDT disabled, VCC = 3V <1 2 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V

Vin = VCC/2
<10 40 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACPD
Analog Comparator 
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40#C to 85#C, VCC = 1.8V to 5.5V (unless otherwise noted)  (Continued)

Symbo l Parameter Condit ion Min. Typ. Max. Units
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External Cloc k Drive 
Waveforms

Figur e 135.  External Clock Drive Waveforms

External Cloc k Drive

Maxim um Speed vs. V CC Maximum frequency is depending on VCC. As shown in Figure 136 and Figure 137, the
Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 4.5V. To calculate
the maximum frequency at a given voltage in this interval, use this equation:

To calculate required voltage for a given frequency, use this equation::

At 3 Volt, this gives:

Thus, when VCC = 3V, maximum frequency will be 9.33 MHz.

At 6 MHz this gives:

Thus, a maximum frequency of 6 MHz requires VCC = 2.25V.

VIL1

VIH1

Table 132.  External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL

Oscillator 
Frequency

0 1 0 8 0 16 MHz

tCLCL Clock Period 1000 125 62.5 ns

tCHCX High Time 400 50 25 ns

tCLCX Low Time 400 50 25 ns

tCLCH Rise Time 2.0 1.6 0.5 0s

tCHCL Fall Time 2.0 1.6 0.5 0s

1tCLCL

Change in period 
from one clock 
cycle to the next

2 2 2 %

Table 133.  Constants used to calculate maximum speed vs. VCC

Voltage and Frequenc y rang e a b Vx Fy

2.7 < VCC < 4.5 or 8 < Frq < 16
8/1.8 1.8/8

2.7 8

1.8 < VCC < 2.7 or 4 < Frq < 8 1.8 4

Frequency a V Vx–$ %- Fy+=

Voltage b F Fy–$ %- Vx+=

Frequency
8

1.8
-------- 3 2.7–$ %- 8+ 9.33= =

Voltage
1.8
8

-------- 6 4–$ %- 1.8+ 2.25= =


